首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   37篇
  国内免费   3篇
工业技术   818篇
  2023年   9篇
  2022年   6篇
  2021年   26篇
  2020年   9篇
  2019年   16篇
  2018年   12篇
  2017年   19篇
  2016年   25篇
  2015年   17篇
  2014年   32篇
  2013年   48篇
  2012年   36篇
  2011年   68篇
  2010年   54篇
  2009年   41篇
  2008年   54篇
  2007年   48篇
  2006年   29篇
  2005年   31篇
  2004年   26篇
  2003年   35篇
  2002年   21篇
  2001年   10篇
  2000年   13篇
  1999年   8篇
  1998年   25篇
  1997年   8篇
  1996年   9篇
  1995年   11篇
  1994年   8篇
  1993年   5篇
  1992年   10篇
  1991年   5篇
  1990年   2篇
  1989年   9篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   4篇
排序方式: 共有818条查询结果,搜索用时 687 毫秒
791.
The increasing use of nanomaterials has raised concerns about their potential risks to human health. Recent studies have shown that nanoparticles can cross the placenta barrier in pregnant mice and cause neurotoxicity in their offspring, but a more detailed understanding of the effects of nanoparticles on pregnant animals remains elusive. Here, we show that silica and titanium dioxide nanoparticles with diameters of 70 nm and 35 nm, respectively, can cause pregnancy complications when injected intravenously into pregnant mice. The silica and titanium dioxide nanoparticles were found in the placenta, fetal liver and fetal brain. Mice treated with these nanoparticles had smaller uteri and smaller fetuses than untreated controls. Fullerene molecules and larger (300 and 1,000 nm) silica particles did not induce these complications. These detrimental effects are linked to structural and functional abnormalities in the placenta on the maternal side, and are abolished when the surfaces of the silica nanoparticles are modified with carboxyl and amine groups.  相似文献   
792.
Cobalt compound nanowires were dispersed in a transparent nonconductive polymer film by merely stirring, and the film's transparency and electrical conductivity were examined. This composite film is a unique system in which the average length of the nanowires exceeds the film's thickness. Even in such a system, a percolation threshold existed for the electric conductivity in the direction of the film thickness, and the value was 0.18 vol%. The electric conductivity value changed from ~1 × 10(-12) S/cm to ~1 × 10(-3) S/cm when the volume fraction exceeded the threshold. The electric conductivity apparently followed the percolation model until the volume fraction of the nanowires was about 0.45 vol %. The visible light transmission and electric conductivity of the composite film of about 1 vol % nanowires were 92% and 5 × 10(-3) S/cm, respectively. Moreover, the electric conductivity in the direction parallel to the film surface did not depend on the amount of the dispersed nanowires, and its value was about 1 × 10(-14) S/cm. Even in a weak magnetic field of about 100 mT, the nanowires were aligned in a vertical and parallel direction to the film surface, and the electric conductivity of each aligned composite film was 2.0 × 10(-2) S/cm and 2.1 × 10(-12) S/cm. The relation between the average wire length and the electric conductivity was examined, and the effect of the magnetic alignment on that relation was also examined.  相似文献   
793.
The preparation of photoresponsive polymer nanowires comprising photochromic azobenzene (Azo) and π‐conjugated fluorene (FO) units is reported. Well‐defined and uniform nanowires of the copolymer (PFOAzo) were successfully fabricated by the single particle nanofabrication technique after optimizing the FO:Azo ratio and the development conditions. Azo units in the PFOAzo nanowires underwent reversible transcistrans isomerization upon exposure to ultraviolet or visible light, leading to changes in the radius (between ca. 6 and 8 nm) and morphology (straight or wavy) of the nanowires. The oligo(alkylfluorene) units in the backbone are found to profit the crosslinking efficiency upon high‐energy ion beam irradiation, and more importantly, provide sufficient flexibility to allow reversible photoswitching. This demonstration of the photoluminescence, semiconducting, and mechanical properties of the PFOAzo nanowires is an important advance in the evolution of electro‐mechanical nanomaterials.  相似文献   
794.
The RNA cleavage activity of the hammerhead ribozyme has been compared in various mixed aqueous solutions containing cosolvents. Kinetic analysis revealed that the tested cosolvents enhanced the ribozyme activity, particularly at low MgCl2 concentrations. These enhancements, in some cases of more than tenfold, resulted from a reduction in the Mg2+ concentration required for substrate cleavage. An inverse correlation was found between the MgCl2 concentration essential for efficient catalysis and the dielectric constant values. In contrast, FRET measurements showed no substantial influence of cosolvents on the Mg2+‐induced structural transitions. The results suggest that the solution environment has various effects on the Mg2+ interactions involved in the catalysis and global folding of the ribozyme.  相似文献   
795.
796.
Nondestructive techniques for appraising gas metal arc welding(GMAW) faults plays a very important role in on-line quality controllability and prediction of the GMAW process. On-line welding quality controllability and prediction have several disadvantages such as high cost, low efficiency, complication and greatly being affected by the environment. An enhanced, efficient evaluation technique for evaluating welding faults based on Mahalanobis distance(MD) and normal distribution is presented. In addition, a new piece of equipment, designated the weld quality tester(WQT), is developed based on the proposed evaluation technique. MD is superior to other multidimensional distances such as Euclidean distance because the covariance matrix used for calculating MD takes into account correlations in the data and scaling. The values of MD obtained from welding current and arc voltage are assumed to follow a normal distribution. The normal distribution has two parameters: the meanm and standard deviations of the data. In the proposed evaluation technique used by the WQT, values of MD located in the range from zero tom+3s are regarded as “good”. Two experiments which involve changing the flow of shielding gas and smearing paint on the surface of the substrate are conducted in order to verify the sensitivity of the proposed evaluation technique and the feasibility of using WQT. The experimental results demonstrate the usefulness of the WQT for evaluating welding quality. The proposed technique can be applied to implement the on-line welding quality controllability and prediction, which is of great importance to design some novel equipment for weld quality detection.  相似文献   
797.
LiNi1/3Mn1/3Co1/3O2 prepared by a spray drying method exhibited poor cyclic performance when it was operated at rates of 0.5C and 2C in 3–4.6 V. A metal oxide (ZrO2, TiO2, and Al2O3) coating (3 wt%) could effectively improve its cyclic performance at both 0.5C and 2C. Electrochemical impedance spectroscopy (EIS) studies suggested that both the surface resistance and the charge transfer resistance of the bare LiNi1/3Mn1/3Co1/3O2 significantly increase after 100 cycles, whose origin is mainly related to the change in both the particle surface and electrode morphologies. The presence of a thin metal oxide layer could remarkably suppress the increase in the total resistance (sum of the surface resistance and the charge transfer resistance), which was attributed to the improvement in good cyclic performances.  相似文献   
798.
799.
Anomalous heat effect by interaction of hydrogen isotope gas and metal nanocomposites supported by zirconia or by silica has been examined. Observed absorption and heat evolution at RT were not too large to be explained by some chemical processes. At elevated temperatures of 200–300 °C, most samples with binary metal nanocomposites produced excess power of 3–24 W lasting for up to several weeks. The excess power was observed not only in the D-Pd·Ni system but also in the HPd·Ni system and HCu·Ni system, while single-element nanoparticle samples produced no excess power. The Pd/Ni ratio is one of the keys to increase the excess power. The maximum phase-averaged excess heat energy exceeded 270 keV/D, and the integrated excess heat energy reached 100 MJ/mol-M or 90 MJ/mol-H. It is impossible to attribute the excess heat energy to any chemical reaction; it is possibly due to radiation-free nuclear process.  相似文献   
800.
Resistance–temperature ( R – T ) characteristics were measured directly at single-grain boundaries in 0.1-mol%-niobium-doped barium titanate bicrystals that had been fabricated from polycrystalline sinters, to determine a geometrical grain-boundary character dependence of the positive temperature coefficient of resistivity (PTCR) effect. Both random boundaries and low-Σ boundaries exhibit a similar grain-boundary character dependence of the PTCR effect through a simple geometrical analysis, using the coincidence of reciprocal lattice points. Differences of the R – T characteristics in individual boundaries have been explained in terms of the formation of a potential barrier that is associated with the oxidation of grain boundaries during cooling, after sintering or annealing. The grain-boundary character is likely to affect the diffusivity of O2− ions and, hence, is crucial to the formation of the potential barrier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号