首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6052篇
  免费   335篇
  国内免费   5篇
工业技术   6392篇
  2024年   11篇
  2023年   104篇
  2022年   145篇
  2021年   232篇
  2020年   154篇
  2019年   133篇
  2018年   195篇
  2017年   168篇
  2016年   253篇
  2015年   250篇
  2014年   307篇
  2013年   411篇
  2012年   395篇
  2011年   476篇
  2010年   361篇
  2009年   353篇
  2008年   348篇
  2007年   328篇
  2006年   249篇
  2005年   217篇
  2004年   166篇
  2003年   158篇
  2002年   130篇
  2001年   86篇
  2000年   81篇
  1999年   69篇
  1998年   96篇
  1997年   51篇
  1996年   52篇
  1995年   63篇
  1994年   34篇
  1993年   36篇
  1992年   29篇
  1991年   22篇
  1990年   20篇
  1989年   19篇
  1988年   16篇
  1987年   13篇
  1986年   12篇
  1985年   9篇
  1984年   24篇
  1983年   11篇
  1982年   10篇
  1981年   7篇
  1980年   8篇
  1978年   7篇
  1976年   9篇
  1975年   7篇
  1971年   11篇
  1970年   5篇
排序方式: 共有6392条查询结果,搜索用时 15 毫秒
71.
ABSTRACT

The workshop of Zambana el Vato (region Trentino, Northern Italy), is dated to the period between the 7th-6th and the 5th century BC. Iron working activities are clearly recognizable from the various finds. Among them there are working slag, heated clay, fragments of hearth or forge, hammerscale and more residues that can be referred to iron technology. A number of selected specimens were sectioned and mounted for photomicroscopy to identify the structure and some of the mounted samples were also examined by scanning electron microscopy (SEM) using both a back scattered electron detector and energy dispersive (EDS) x-ray analysis. This paper presents the results of these studies. The hearths were regularly repaired, as their fragments were found mixed with working slag. The hammerscale samples indicate that there were three iron-working areas. The fragments of forge with traces of tuyeres indicate that bellows were employed. Refining slag was identified among the debris. This is particularly significant as for the moment no iron refining centers are known in this area.  相似文献   
72.
The equations that govern Kirchhoff–Love plate theory are solved using quadratic Powell–Sabin B‐splines and unstructured standard T‐splines. Bézier extraction is exploited to make the formulation computationally efficient. Because quadratic Powell–Sabin B‐splines result in ‐continuous shape functions, they are of sufficiently high continuity to capture Kirchhoff–Love plate theory when cast in a weak form. Unlike non‐uniform rational B‐splines (NURBS), which are commonly used in isogeometric analysis, Powell–Sabin B‐splines do not necessarily capture the geometry exactly. However, the fact that they are defined on triangles instead of on quadrilaterals increases their flexibility in meshing and can make them competitive with respect to NURBS, as no bending strip method for joined NURBS patches is needed. This paper further illustrates how unstructured T‐splines can be modified such that they are ‐continuous around extraordinary points, and that the blending functions fulfil the partition of unity property. The performance of quadratic NURBS, unstructured T‐splines, Powell–Sabin B‐splines and NURBS‐to‐NURPS (non‐uniform rational Powell–Sabin B‐splines, which are obtained by a transformation from a NURBS patch) is compared in a study of a circular plate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
73.
74.
75.
We present a robust optimization framework that is applicable to general nonlinear programs (NLP) with uncertain parameters. We focus on design problems with partial differential equations (PDE), which involve high computational cost. Our framework addresses the uncertainty with a deterministic worst-case approach. Since the resulting min–max problem is computationally intractable, we propose an approximate robust formulation that employs quadratic models of the involved functions that can be handled efficiently with standard NLP solvers. We outline numerical methods to build the quadratic models, compute their derivatives, and deal with high-dimensional uncertainties. We apply the presented approach to the parametrized shape optimization of systems that are governed by different kinds of PDE and present numerical results.  相似文献   
76.
A nanofabrication method for the production of ultra-dense planar metallic nanowire arrays scalable to wafer-size is presented. The method is based on an efficient template deposition process to grow diverse metallic nanowire arrays with extreme regularity in only two steps. First, III–V semiconductor substrates are irradiated by a low-energy ion beam at an elevated temperature, forming a highly ordered nanogroove pattern by a “reverse epitaxy” process due to self-assembly of surface vacancies. Second, diverse metallic nanowire arrays (Au, Fe, Ni, Co, FeAl alloy) are fabricated on these III–V templates by deposition at a glancing incidence angle. This method allows for the fabrication of metallic nanowire arrays with periodicities down to 45 nm scaled up to wafer-size fabrication. As typical noble and magnetic metals, the Au and Fe nanowire arrays produced here exhibited large anisotropic optical and magnetic properties, respectively. The excitation of localized surface plasmon resonances (LSPRs) of the Au nanowire arrays resulted in a high electric field enhancement, which was used to detect phthalocyanine (CoPc) in surface-enhanced Raman scattering (SERS). Furthermore, the Fe nanowire arrays showed a very high in-plane magnetic anisotropy of approximately 412 mT, which may be the largest in-plane magnetic anisotropy field yet reported that is solely induced via shape anisotropy within the plane of a thin film.
  相似文献   
77.
Profiling of the electrical properties of nanowires (NWs) and NW heterocontacts with high spatial resolution is a challenge for any application and advanced NW device development. For appropriate NW analysis, we have established a four-point prober, which is combined in vacuo with a state-of-the-art vapor-liquid-solid preparation, enabling contamination-free NW characterization with high spatial resolution. With this ultrahigh-vacuum-based multi-tip scanning tunneling microscopy (MT-STM), we obtained the resistance and doping profiles of freestanding NWs, along with surface-sensitive information. Our in-system 4-probe STM approach decreased the detection limit for low dopant concentrations to the depleted case in upright standing NWs, while increasing the spatial resolution and considering radial depletion regions, which may originate from surface changes. Accordingly, the surface potential of oxide-free GaAs NW {112} facets has been estimated to be lower than 20 mV, indicating a NW surface with very low surface state density.
  相似文献   
78.
This paper reports the results of an exploratory, theory-building study on the impact of creativity on business processes, their management, and the use of information technology (IT) in particular. The empirical evidence was derived from organizations within the creative industries, specifically film and visual effects (VFX) production. An adapted grounded theory approach was employed in order to analyze the data. The study identifies the dynamics of business processes that can be described as highly dependent on creativity, intensively involving the client, complex, and interdependent. It explains the processes’ organizational context as well as strategies and IT systems that organizations use in order to manage these processes. The study suggests that creativity-intensive processes are characterized by high levels of uncertainty with regard to outcome, process structure, and required resources. Creative organizations pursue both creative and operational process performance while simultaneously mitigating creative and operational risk.  相似文献   
79.
We present a nested multigrid method to optimize time-periodic, parabolic, partial differential equations (PDE). We consider a quadratic tracking objective with a linear parabolic PDE constraint. The first order optimality conditions, given by a coupled system of boundary value problems can be rewritten as an Fredholm integral equation of the second kind, which is solved by a multigrid of the second kind. The evaluation of the integral operator consists of solving sequentially a boundary value problem for respectively the state and the adjoints. Both problems are solved efficiently by a time-periodic space-time multigrid method.  相似文献   
80.
Numerous numerical methods have been developed in an effort to accurately predict stresses in bones. The largest group are variants of the h-version of the finite element method (h-FEM), where low order Ansatz functions are used. By contrast, we3 investigate a combination of high order FEM and a fictitious domain approach, the finite cell method (FCM). While the FCM has been verified and validated in previous publications, this article proposes methods on how the FCM can be made computationally efficient to the extent that it can be used for patient specific, interactive bone simulations. This approach is called computational steering and allows to change input parameters like the position of an implant, material or loads and leads to an almost instantaneous change in the output (stress lines, deformations). This direct feedback gives the user an immediate impression of the impact of his actions to an extent which, otherwise, is hard to obtain by the use of classical non interactive computations. Specifically, we investigate an application to pre-surgical planning of a total hip replacement where it is desirable to select an optimal implant for a specific patient. Herein, optimal is meant in the sense that the expected post-operative stress distribution in the bone closely resembles that before the operation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号