首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   583篇
  免费   23篇
工业技术   606篇
  2024年   2篇
  2023年   10篇
  2022年   12篇
  2021年   22篇
  2020年   18篇
  2019年   14篇
  2018年   24篇
  2017年   25篇
  2016年   22篇
  2015年   4篇
  2014年   21篇
  2013年   49篇
  2012年   35篇
  2011年   23篇
  2010年   20篇
  2009年   24篇
  2008年   23篇
  2007年   13篇
  2006年   15篇
  2005年   9篇
  2004年   5篇
  2003年   4篇
  2002年   8篇
  2001年   3篇
  2000年   5篇
  1999年   7篇
  1998年   20篇
  1997年   16篇
  1996年   18篇
  1995年   12篇
  1994年   16篇
  1993年   13篇
  1992年   7篇
  1991年   8篇
  1990年   7篇
  1989年   3篇
  1988年   15篇
  1987年   4篇
  1985年   2篇
  1984年   8篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   8篇
  1977年   3篇
  1976年   7篇
  1972年   2篇
  1966年   1篇
  1961年   1篇
  1955年   1篇
排序方式: 共有606条查询结果,搜索用时 484 毫秒
81.
Wireless Personal Communications - Wireless body area network (WBAN) is the subfield of Wireless Sensor Network, employs in the area of monitoring the health of the patient. WBAN is also known as...  相似文献   
82.
Real-time embedded systems (RTESs) operating in safety-critical domains have to satisfy strict performance requirements in terms of task deadlines, response time, and CPU usage. Two of the main factors affecting the satisfaction of these requirements are the configuration parameters regulating how the system interacts with hardware devices, and the external events triggering the system tasks. In particular, it is necessary to carefully tune the parameters in order to ensure a satisfactory trade-off between responsiveness and usage of computational resources, and also to stress test the system with worst-case inputs likely to violate the requirements. Performance tuning and stress testing are usually manual, time-consuming, and error-prone processes, because the system parameters and input values range in a large domain, and their impact over performance is hard to predict without executing the system. In this paper, we provide an approach, based on UML/MARTE, to support the generation of system configurations predicted to achieve a satisfactory trade-off between response time and CPU usage, and stress test cases that push the system tasks to violate their deadlines. First, we devise a conceptual model that specifies the abstractions required for analyzing task deadlines, response time, and CPU usage, and provide a mapping between these abstractions and UML/MARTE. Then, we prune the UML/MARTE metamodel to only contain a purpose-specific subset of entities needed to support performance tuning and stress testing. The pruned version is a supertype of UML/MARTE, which ensures that all instances of the pruned metamodel are also instances of UML/MARTE. Finally, we cast the generation of configurations and stress test cases as two constrained optimization problems (COPs) over our conceptual model. The input data for these COPs in automatically generated via a model-to-text (M2T) transformation from models specified in the pruned UML/MARTE metamodel to the Optimization Programming Language. We validate our approach in a safety-critical RTES from the maritime and energy domain, showing that (1) our conceptual model can be applied in an industrial setting with reasonable effort, and (2) the optimization problems effectively identify configurations predicted to minimize response time and CPU usage, and stress test cases that maximize deadline misses. Based on our experience, we highlight challenges and potential issues to be aware of when using UML/MARTE to support performance tuning and stress testing in an industrial context.  相似文献   
83.
Software and Systems Modeling - Model-driven technologies (MD*), considered beneficial through abstraction and automation, have not enjoyed widespread adoption in the industry. In keeping with the...  相似文献   
84.
Machine learning methods provide a powerful approach for analyzing longitudinal data in which repeated measurements are observed for a subject over time. We boost multivariate trees to fit a novel flexible semi-nonparametric marginal model for longitudinal data. In this model, features are assumed to be nonparametric, while feature-time interactions are modeled semi-nonparametrically utilizing P-splines with estimated smoothing parameter. In order to avoid overfitting, we describe a relatively simple in sample cross-validation method which can be used to estimate the optimal boosting iteration and which has the surprising added benefit of stabilizing certain parameter estimates. Our new multivariate tree boosting method is shown to be highly flexible, robust to covariance misspecification and unbalanced designs, and resistant to overfitting in high dimensions. Feature selection can be used to identify important features and feature-time interactions. An application to longitudinal data of forced 1-second lung expiratory volume (FEV1) for lung transplant patients identifies an important feature-time interaction and illustrates the ease with which our method can find complex relationships in longitudinal data.  相似文献   
85.
Detection and quantification of dilute viral aerosols, as encountered outside animal housing facilities, requires methods that are able to detect small numbers of viruses in large volumes of air. This study compared the performance of two size-differentiating cascade impactors; an Andersen 8-stage (ACI; 28.3 L/min) and a high volume Tisch (TCI; 1,133 L/min) to assess sampling efficiency for detecting porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV). Samples of particles sorted by aerodynamic diameter were analyzed by quantitative polymerase chain reaction (qPCR) and collection efficiency was assessed by particle size. Collection media (minimum essential medium [MEM] and beef extract [BE]), elution technique (active versus passive), and sampling times (10, 20, and 30 min) were variables assessed for the TCI sampler. Extraction efficiency was 35% higher with BE as compared to that of MEM (p = 0.0007); active extraction technique was 19% more efficient than the passive technique (p = 0.03); time of sampling did not significantly affect the amount of virus recovered. The ACI sampler was more efficient in detecting both viruses from small and medium sized airborne particles (≤3 μm) as compared to the TCI sampler (p < 0.001). The latter sampler, however, was more efficient at IAV detection from large airborne particles (>3 μm) (p = 0.0025) indicating the potential of this sampler in detecting the presence of small amounts of viruses in aerosols under field conditions.

© 2017 American Association for Aerosol Research  相似文献   

86.
This paper presents new topologies for emulating floating immittance functions using three to five passive elements and only two current-feedback operational-amplifiers (CFOAs). The feasibility of using only two CFOAs and two passive components is explored. The proposed topologies can emulate lossy positive and negative inductances and capacitance-, inductance-, resistance-multipliers, and frequency dependent negative and positive conductances. The functionality of the proposed circuits was experimentally verified using the commercially available AD844 CFOA. The experimental results are in excellent agreement with theoretical calculations.  相似文献   
87.
The incorporation of functionalized nanoscale fillers into traditional glass fiber/unsaturated polyester (GF/UPE) composites provides a more robust mechanical attributes. The current study demonstrates the potential of 3-mercaptopropyl trimethoxysilane (MPTS)-functionalized carbon black (f-CB) for enhancing the thermo-mechanical properties of GF composites. The composites infused with 1, 3 and 5 wt% of pristine and MPTS-functionalized CB were fabricated by hand lay-up and hot press processing. Tensile testing, interlaminar shear strength (ILSS) testing and dynamic mechanical analysis were used to evaluate the performance of nanocomposites. Fourier transform infrared spectroscopy validated the MPTS functionalization of CB. Pristine CB-loaded nanocomposites exhibited marginal improvement in ultimate tensile strength (UTS), ILSS and thermo-mechanical properties. However, with the addition of f-CB, the improvement in all the studied properties was more substantial. The inclusion of 5 wt% f-CB increased the elastic modulus and UTS by 16 and 22%, respectively, whereas the ILSS was enhanced by 36%, in comparison to the neat GF composite. The scanning electron microscope analysis of fractured ILSS samples revealed better fiber-matrix adhesion and compatibility in f-CB-loaded nanocomposites. At the same filler weight percentage, the storage modulus at 25 °C was ~ 19% higher than that of neat composite. The f-CB inclusion resulted in increment of T g by ~ 13 °C over the T g of neat GF/UPE composite (~ 109 °C). These improvements were due to the chemical connection of f-CB to the UPE matrix and GF surface. With such improvements in thermal and mechanical properties, these nanocomposites can replace the conventional GF composites with prominent improvements in performance.  相似文献   
88.
0.5[(Ba0.7Ca0.3)TiO3]–0.5[Ba(Zr0.2Ti0.8)O3] lead-free ceramics were synthesised by coprecipitation method and sintered by fast microwave sintering (MWS) and by conventional sintering (CS) at 1200°C. After being sintered with the two different methods, the materials were characterised for structural, microstructural, frequency and temperature-dependent dielectric properties, Raman spectroscopy, and ferroelectric measurements. Results are compared and discussed in the present paper. X-ray diffraction confirms the presence of the tetragonal and rhombohedral phases in the composites sintered by both methods. The ferroelectric to paraelectric transition temperature (Tc) is increased in microwave-sintered composite. Diffuse constant (γ) values show BCT–BZT ceramics to be neither normal ferroelectrics nor relaxor ferroelectrics. Raman spectra confirm phase transition in the ceramic samples. Saturation polarisation (Ps) values are 7.62 and 4.28?µC?cm?2 and nearly equal remanant polarisation (Pr) values were observed for BCT–BZT composite sintered with MWS and CS, respectively.  相似文献   
89.
A total of 200 samples (muscles and viscera, 100 of each) of fresh water fish, walking catfish (Clarias batrachus) were screened for Listeria spp. All the samples were subjected to a two-step enrichment followed by plating on selective media. Confirmation of the isolates was on the basis of biochemical characters, haemolysis on blood agar and Christie, Atkins, Munch Petersen test. A total of 39 isolates of Listeria spp. were recovered. Of these 26 (67%), 8 (21%), 3 (8%) and 2 (5%) were Listeria monocytogenes, Listeria seeligeri, Listeria grayi and Listeria welshimeri, respectively. The isolates were subjected to a PCR assay for detection of the virulence-associated genes individually or together. The plcA, actA, hlyA and iap genes were detected in six strains, three genes (actA, hlyA and iap) in nine strains, the plcA, hlyA and iap in our strain, the hlyA and iap were in three strains, actA and hlyA in four strains, plcA and hlyA in our strain and hlyA in two strains. The hlyA and iap were also detected in L. seeligeri.  相似文献   
90.
Fruits and vegetables are the most utilized commodities among all horticultural crops. They are consumed raw, minimally processed, as well as processed, due to their nutrients and health‐promoting compounds. With the growing population and changing diet habits, the production and processing of horticultural crops, especially fruits and vegetables, have increased very significantly to fulfill the increasing demands. Significant losses and waste in the fresh and processing industries are becoming a serious nutritional, economical, and environmental problem. For example, the United Nations Food and Agriculture Organization (FAO) has estimated that losses and waste in fruits and vegetables are the highest among all types of foods, and may reach up to 60%. The processing operations of fruits and vegetables produce significant wastes of by‐products, which constitute about 25% to 30% of a whole commodity group. The waste is composed mainly of seed, skin, rind, and pomace, containing good sources of potentially valuable bioactive compounds, such as carotenoids, polyphenols, dietary fibers, vitamins, enzymes, and oils, among others. These phytochemicals can be utilized in different industries including the food industry, for the development of functional or enriched foods, the health industry for medicines and pharmaceuticals, and the textile industry, among others. The use of waste for the production of various crucial bioactive components is an important step toward sustainable development. This review describes the types and nature of the waste that originates from fruits and vegetables, the bioactive components in the waste, their extraction techniques, and the potential utilization of the obtained bioactive compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号