首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   9篇
  国内免费   3篇
工业技术   96篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   2篇
  2017年   6篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   6篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   5篇
  2001年   4篇
  2000年   8篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有96条查询结果,搜索用时 187 毫秒
91.
文中通过分析当前的DiffServ模型及其实现,提出改进方案--基于分层控制的DiffServ模型.模型利用控制分层的思想,将原有的控制平面进一步细化为业务控制平面和模块控制平面.在新的模型中,原本分离的DiffServ各模块,可以通过内部控制消息相互协调,按照动态的QoS策略,共同来保证用户的服务质量(QoS)的需求.  相似文献   
92.
M y O x -modified CeO2–ZrO2 (M = Al, Ba, Cu, La, Nd, Pr, Si) solid solutions with the atomic ratio of Zr/Ce = 1 were prepared by the reverse microemulsion method, and the effect of different additives on the structure characteristics, thermal stability, reducibility, and catalytic activity of CeO2–ZrO2 solid solution for methane combustion were investigated. According to their different effects, M y O x can be classified into three groups. The first group includes SiO2 and Al2O3 which do not vary the crystalline phase of CeO2–ZrO2 solid solution but distort the crystal lattice obviously. They are the most effective additives for improving the surface area, thermal stability, and reducibility of CeO2–ZrO2, and they can also promote the catalytic activity of Pd/CeO2–ZrO2 for methane combustion. The second group includes La2O3, Pr2O3, and Nd2O3, which can also keep the same crystalline phase, distort the crystal lattice, and improve the surface area and thermal stability of the solid solution, but their effects are much weaker and they decrease the reducibility of the solid solution. The third group includes BaO and CuO, whose effects on the property of CeO2–ZrO2 are much different. BaO and CuO, especially CuO, can decrease the thermal stability, and reduction extent of CeO2–ZrO2. CuO-modified CeO2–ZrO2 calcined at 550 °C shows the comparable high activity for the methane combustion, but after being calcined at 900 °C, CuO-modified CeO2–ZrO2 would separate into three phases as CeO2, ZrO2, and CuO, resulting in the much lower activity for the methane catalytic combustion.  相似文献   
93.
94.
The efficiency of air curtain in reducing infiltration and associated energy usage is currently evaluated statically by using an efficiency factor, η air, based on single steady/static condition, which is often not the case for actual buildings under variable weather conditions and door usages. Based on a new method to consider these dynamic effects on air curtains, this study uses a dynamic efficiency factor η B in terms of whole building site end-use energy to assess the efficiency of air curtains when compared to single doors (i.e. without air curtains) and vestibule doors. Annual energy simulations were conducted for two reference building models considering their specific door usage schedules in 16 climate zone locations in the North America. The variations of the proposed efficiency factor for different climate zones illustrated the dynamic impacts of weather, building, unit fan energy and door usage frequency on air curtain efficiency. A sensitivity study was also conducted for the operation temperature conditions of air curtain and showed that η B also considers these operational conditions. It was thus concluded that using whole building site end-use energy to calculate the efficiency factor, ηB, can provide more realistic estimates of the performance of air curtains operations in buildings than the existing static efficiency factor.  相似文献   
95.
Forecasting building fire growth and smoke dispersion is a challenging task but can provide early warnings to first responders and building occupants and thus significantly benefit active building fire protection. Although existent computer simulation models may provide acceptable estimations of smoke temperature and quantity, most simulations are still not able to achieve real-time forecast of building fire due to high computational requirements, and/or simulation accuracy subject to users’ inputs. This paper investigates one of the possibilities of using ensemble Kalman filter (EnKF), a statistical method utilizing the real-time sensor data from thermocouple trees in each room, to estimate the spread of an accidental building fire and further forecast smoke dispersion in real time. A general approach to forecasting building fire and smoke is outlined and demonstrated by a 1:5 scaled compartment fire experiment using a 1.0 kW to 2.8 kW propane burner as fire source. The results indicate that the EnKF method is able to forecast smoke transport in a multi-room building fire using 40 ensemble members and provide noticeable accuracy and lead time. Unlike other methods that directly use measurement data as model inputs, the developed model is able to statistically update model parameters to maintain the forecasting accuracy in real time. The results obtained from the model can be potentially applied to assist mechanical smoke removal, emergency evacuation and firefighting.  相似文献   
96.
Journal of Mechanical Science and Technology - We studied the transient driving power of an oil pump for 1.6 L PFI engine in a passenger car under the new European driving cycle (NEDC) and...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号