首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5217篇
  免费   124篇
  国内免费   13篇
工业技术   5354篇
  2023年   18篇
  2022年   51篇
  2021年   88篇
  2020年   50篇
  2019年   61篇
  2018年   81篇
  2017年   58篇
  2016年   77篇
  2015年   62篇
  2014年   126篇
  2013年   253篇
  2012年   179篇
  2011年   268篇
  2010年   206篇
  2009年   195篇
  2008年   239篇
  2007年   206篇
  2006年   198篇
  2005年   190篇
  2004年   169篇
  2003年   157篇
  2002年   148篇
  2001年   108篇
  2000年   100篇
  1999年   115篇
  1998年   341篇
  1997年   251篇
  1996年   175篇
  1995年   124篇
  1994年   125篇
  1993年   111篇
  1992年   63篇
  1991年   57篇
  1990年   63篇
  1989年   51篇
  1988年   39篇
  1987年   54篇
  1986年   36篇
  1985年   54篇
  1984年   52篇
  1983年   46篇
  1982年   48篇
  1981年   47篇
  1980年   50篇
  1979年   32篇
  1978年   20篇
  1977年   21篇
  1976年   39篇
  1975年   12篇
  1972年   11篇
排序方式: 共有5354条查询结果,搜索用时 15 毫秒
61.
PTCR characteristics in porous semiconducting barium titanate ceramics with Curie points from 60° to 360°C were investigated. The magnitude of the PTCR effect in these cerumics decreases self-onsistently with increasing Curie point within this temperature range. A PTCR efSect of more than 4 orders of magnitude was ahserved, for a Ba0.44Pb0.6TiO3 ceramic with a Curie point of 360°C .  相似文献   
62.
Active 4-dodecanoyl-2-nitrophenyl esters of β-alanine, β-alanyl-β-alanine, and β-alanyl-β-alanyl-β-alanine were prepared, and tried to polymerize in various solvents. Nonpolar solvents were found to be convenient for the polycondensation reaction. The yield of the polycondensation was high for the monopeptide ester, and less for the dipeptide and tripeptide esters. The effect of temperature on the polycondensation reaction was also studied.  相似文献   
63.
Amorphous CeO2–ZrO2 gels were prepared by coprecipitation in ammonia solutions. The onset of crystallization of the gels, from calcining in air, was 420°C, while 200° to 250°C in the presence of water and organic solvents such as methanol and ethanol. The sintering behaviors of CeO2–ZrO2 powders were sensitive to the crystallizing conditions, since hard agglomerates formed when the precipitated gels were crystallized by normal calcination in air, whereas soft agglomerates formed when they were crystallized in water or organic solvents. CeO2–ZrO2 powders crystallized in methanol and water at 250°C were sintered to full theoretical density at 1150° and 1400°C, respectively, whereas that crystallized by calcination in air at 450°C was sintered to only 95.2% of theoretical density, even at 1500°C.  相似文献   
64.
Poly(p-phenylene terephthalamide) (PPTA) was blended with poly(vinyl chloride) (PVC) by solution-blending method. PPTA was metalated for dissolving in dimethyl sulfoxide. Dimethyl sulfoxide was used as a common solvent. In PPTA/PVC composite, PPTA accelerated the thermal degradation of PVC. PPTA molecules are aggregated as microfibrillar form in PVC matrix. Such microfibrils are dispersed homogeneously in PVC matrix, according to polarizing microscopic observation. The average diameter of the microfibrils becomes smaller in the composite with lower content of PPTA. In the surface region of PPTA microfibrils the intermolecular hydrogen bonds between C? Cl of PVC and N? H of PPTA are formed. Young's modulus and the yield stress at room temperature were higher in the composites than those in PVC. The modulus of the composites was higher, especially at the high temperatures above their glass transition temperatures, than that in PVC. The temperature dependence of modulus can be calculated by using the mechanical model equivalent to the quasi-3-dimensional microfibrillar model which will be approximately applied to the composite structure. It becomes apparent that the modulus of the PPTA microfibrils evaluated by using the mechanical model is higher in the higher molecular weight PPTA.  相似文献   
65.
Carbon molecular sieve membranes for gas separation prepared using poly(phenylene oxide) (PPO) as precursor have been examined. The PPO precursor was modified by introducing a trimethylsilyl (TMS) substituent and its effect on the gas transport property of the resulting carbon membrane was examined. TMS-substituted PPO (TMSPPO) was prepared in a high yield by a simple one-step reaction, and its carbon membrane was successfully fabricated. The modification improved the gas permeability of the resulting membrane which also exhibited excellent O2/N2 and CO2/CH4 separation performance comparable to those of polyimide-derived carbon membranes. From the analysis of the microstructure of the TMSPPO carbon membranes, it is believed that the TMS groups improve gas diffusivity by increasing the micropore volume.  相似文献   
66.
Recently, we introduced a concept of combinatorial chemistry to computational chemistry and proposed a new method called “combinatorial computational chemistry”, which enables us to perform a theoretical high-throughput screening of catalysts. In the present paper, we reviewed our recent application of our combinatorial computational chemistry approach to the design of new catalysts for high-quality transportation fuels. By using our combinatorial computational chemistry techniques, we succeeded to predict new catalysts for methanol synthesis and Fischer–Tropsch synthesis. Moreover, we have succeeded in the development of chemical reaction dynamics simulator based on our original tight-binding quantum chemical molecular dynamics method. This program realizes more than 5000 times acceleration compared to the regular first-principles molecular dynamics method. Electronic- and atomic-level information on the catalytic reaction dynamics at reaction temperatures significantly contributes the catalyst design and development. Hence, we also summarized our recent applications of the above quantum chemical molecular dynamics method to the clarification of the methanol synthesis dynamics in this review.  相似文献   
67.
Flow problems with moving boundaries and interfaces include fluid–structure interaction (FSI) and a number of other classes of problems, have an important place in engineering analysis and design, and offer some formidable computational challenges. Bringing solution and analysis to them motivated the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) method and also the variational multiscale version of the Arbitrary Lagrangian–Eulerian method (ALE-VMS). Since their inception, these two methods and their improved versions have been applied to a diverse set of challenging problems with a common core computational technology need. The classes of problems solved include free-surface and two-fluid flows, fluid–object and fluid–particle interaction, FSI, and flows with solid surfaces in fast, linear or rotational relative motion. Some of the most challenging FSI problems, including parachute FSI, wind-turbine FSI and arterial FSI, are being solved and analyzed with the DSD/SST and ALE-VMS methods as core technologies. Better accuracy and improved turbulence modeling were brought with the recently-introduced VMS version of the DSD/SST method, which is called DSD/SST-VMST (also ST-VMS). In specific classes of problems, such as parachute FSI, arterial FSI, ship hydrodynamics, fluid–object interaction, aerodynamics of flapping wings, and wind-turbine aerodynamics and FSI, the scope and accuracy of the FSI modeling were increased with the special ALE-VMS and ST FSI techniques targeting each of those classes of problems. This article provides an overview of the core ALE-VMS and ST FSI techniques, their recent versions, and the special ALE-VMS and ST FSI techniques. It also provides examples of challenging problems solved and analyzed in parachute FSI, arterial FSI, ship hydrodynamics, aerodynamics of flapping wings, wind-turbine aerodynamics, and bridge-deck aerodynamics and vortex-induced vibrations.  相似文献   
68.
A novel cellulose solution, prepared by dissolving an alkali-soluble cellulose, which was obtained by the steam explosion treatment on almost pure natural cellulose (soft wood pulp), into the aqueous sodium hydroxide solution with specific concentration (9.1 wt %) was employed for the first time to prepare a new class of multifilament-type cellulose fiber. For this purpose a wet spinning system with acid coagulation bath was applied. The mechanical properties and structural characteristics of the resulting cellulose fibers were compared with those of regenerated cellulose fibers such as viscose rayon and cuprammonium rayon commercially available. X-ray analysis shows that the new cellulose fiber is crystallographically cellulose II, and its crystallinity is higher but its crystalline orientation is slightly lower than those of other commercial regenerated fibers. The degree of breakdown of intramolecular hydrogen bond at C3[Xam(C3)] of the cellulose fiber, as determined by solid-state cross-polarization magic-angle sample spinning (CP/MAS) 13C NMR, is much lower than other, and the NMR spectra of its dry and wet state were significantly different from each other, indicating that cellulose molecules in the new cellulose fiber are quite mobile when wet. This phenomenon has not been reported for so-called regenerated cellulose fibers.  相似文献   
69.
The polymeric microspheres were synthesized by the precipitation copolymerization of glycidyl methacrylate (GMA) with methacrylic acid(MAA) or 2‐hydoxyethyl methacrylate (2‐HEMA) containing styrene (ST) in SC‐CO2. Scanning electron microscopy (SEM) showed that the products were spherical microparticles, with the addition of MAA and/or 2‐HEMA as the monomer, with diameter of 0.2–2 μm. The effects of copolymerization pressure, temperature, and ratios of GMA/MAA, ST, and/or GMA/2‐HEMA, on the particle size and morphology were investigated in detail. A new experiment setup is proposed for the large amount of production, based on the rule of lower monomer concentration, more stable system, and better use of the present polymerization apparatus. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2425–2431, 2007  相似文献   
70.
Dielectric and piezoelectric properties of 0.02Pb(Y2/3W1/3)O3 0.98Pb(Zr0.52Ti0.48)O3 ceramics doped with additives (Nb2O5, La2O3, MnO2, and Fe2O3) were investigated. The grain sizes of these ceramics decreased with increasing amounts of additives. For additions of MnO2 and Fe2O3, dielectric losses decreased, while for Nb2O5 and La2O3, these values increased. The maximum values of the mechanical quality factor Qm were found to be 956 and 975 for additions of 0.9 wt% Fe2O3 and 0.7 wt% MnO2, respectively, but donor dopants (Nb2O5 and La2O3) did not change the values of Qm . On the other hand, the piezoelectric constant d33 and the electromechanical coupling factor kp decreased with additions of MnO2 and Fe2O3, but improved with additions of Nb2O5 and La2O3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号