首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   31篇
  国内免费   1篇
工业技术   297篇
  2024年   2篇
  2023年   6篇
  2022年   11篇
  2021年   18篇
  2020年   19篇
  2019年   15篇
  2018年   32篇
  2017年   22篇
  2016年   22篇
  2015年   10篇
  2014年   21篇
  2013年   24篇
  2012年   13篇
  2011年   33篇
  2010年   18篇
  2009年   11篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1998年   2篇
  1981年   1篇
排序方式: 共有297条查询结果,搜索用时 15 毫秒
41.
In order to calculate the electron energy distribution in the fuel rod gap of a VVER-1000 nuclear reactor,the Fokker-Planck equation(FPE)governing the non-equilibrium behavior of electrons passing through the fuel-rod gap as an absorber has been solved in this paper.Besides,the Monte Carlo Geant4 code was employed to simulate the electron migration in the fuel-rod gap and the energy distribution of electrons was found.As for the results,the accuracy of the FPE was compared to the Geant4 code outcomes and a satisfactory agreement was found.Also,different percentage of the volatile and noble gas fission fragments produced in fission reactions in fuel rod,i.e.Krypton,Xenon,Iodine,Bromine,Rubidium and Cesium were employed so as to investigate their effects on the electrons' energy distribution.The present results show that most of the electrons in the fuel rod's gap were within the thermal energy limitation and the tail of the electron energy distribution was far from a Maxwellian distribution.The interesting outcome was that the electron energy distribution is slightly increased due to the accumulation of fission fragments in the gap.It should be noted that solving the FPE for the energy straggling electrons that are penetrating into the fuel-rod gap in the VVER-1000 nuclear reactor has been carried out for the first time using an analytical approach.  相似文献   
42.
Coupling the methanol synthesis with the dehydrogenation of cyclohexane to benzene in a co-current flow, catalytic fixed-bed double-membrane reactor configuration in order to simultaneous pure hydrogen and methanol production was considered theoretically. The thermally coupled double-membrane reactor (TCDMR) consists of two Pd/Ag membranes, one for separation of pure hydrogen from endothermic side and another one for permeation of hydrogen from feed synthesis gas side (inner tube) into exothermic side. A steady-state heterogeneous model is developed to analyze the operation of the coupled methanol synthesis. The proposed model has been used to compare the performance of a TCDMR with conventional reactor (CR) and thermally coupled membrane reactor (TCMR) at identical process conditions. This comparison shows that TCDMR in addition to possessing advantages of a TCMR has a more favorable profile of temperature and increased productivity compared with other reactors. The influence of some operating variables is investigated on hydrogen and methanol yields. The results suggest that utilizing of this reactor could be feasible and beneficial. Experimental proof of concept is needed to establish the validity and safe operation of the recuperative reactor.  相似文献   
43.
In this work the effects of different promoters (Cr, Al, Mn, Ce, Ni, Co and Cu) on the structural and catalytic properties of Nanocrystalline iron based catalysts for high temperature water gas shift reaction were investigated. The catalysts were prepared in active phase (Fe3O4) via a facile direct synthesis routs without any additive and characterized using X-ray diffraction (XRD), N2 adsorption (BET), temperature-programmed reduction (TPR), transmission and scanning electron microscopies (TEM,SEM) techniques. The obtained results indicated that synergic effect of Mn and Ni promoters can lead to obtain a Cr-free catalyst with high activity. In addition, the effect of Ni content on the structural and catalytic properties of the Fe–Mn–Ni catalysts was investigated. It was found that Fe–Mn–Ni catalyst with Fe/Mn = 10 and Fe/Ni = 5 weight ratios showed the highest catalytic activity among the prepared catalysts and possessed a stable catalytic performance without any decrease during 10 h time on stream. Moreover, the effect of GHSV and steam/gas ratio on the catalytic performance of this catalyst was investigated.  相似文献   
44.
We have fabricated nanocrystalline Mg–Al powders with nominal Al compositions of 4 and 8 at% by the electrodeposition technique and have compared their hydrogenation characteristics with those for a commercially available pure Mg powder. It is elucidated that interestingly the amount of Al incorporated in MgH2 increases with decreasing the hydrogenation temperature. This observation indicates that the magnesium hydride phase has a limited solubility for aluminum and the supersaturation of hydride with Al is attributed to the slower mobility of aluminum at low temperatures. The rejection of Al during hydride formation is shown to result in a higher fraction of the intermetallic phase, thus reducing the hydrogen capacity. It is suggested that the presence of the intermetallic phase prior to hydrogenation enhances the hydride nucleation rate, which further decreases the hydrogen capacity in comparison to pure Mg.  相似文献   
45.
On-line model predictive control approaches require the online solution of an optimization problem. In contrast, the explicit model predictive control moves major part of computation offline. Therefore, eMPC enables one to implement a MPC in real time for wide range of fast systems. The eMPC approach requires the exact system model and results a piecewise affine control law defined on a polyhedral partition in the state space. As an important limitation, disturbances may reduce performance of the explicit model predictive control. This paper presents efficient approach for handling the problem of using eMPC for constrained systems with disturbances. It proposes an approach to improve performance of the closed loop system by designing a suitable state and disturbance estimator. Conditions for observability of the disturbances are considered and it is depicted that applying the disturbance’s estimation leads to rejection of the response error. It is also shown that the proposed approach prevents the reduction of feasible space. Simulation results illustrate the advantages of this approach.  相似文献   
46.
The cylindrical wire electrical discharge turning (CWEDT) process was developed to generate precise cylindrical forms on hard, difficult to machine materials. A precise, flexible, and corrosion-resistant submerged rotary spindle was designed and added to a conventional five-axis CNC wire electrical discharge machine (EDM) to enable the generation of free-form cylindrical geometries. The hardness and strength of the work material are no longer the dominating factors that affect the tool wear and hinder the machining process. In this study, the effect of machining parameters on surface roughness (R a) and roundness in cylindrical CWEDT of a AISI D3 tool steel is investigated. The selection of this material was made taking into account its wide range of applications in tools, dies, and molds and in industries such as punching, tapping, reaming, and so on in cylindrical forms. Surface roughness and roundness are chosen as two of the machining performances to verify the process. In addition, power, pulse off-time, voltage, and spindle rotational speed are adopted for evaluation by full factorial design of experiments. In this case, a 22?×?32 mixed full factorial design has been selected considering the number of factors used in the present study. The main effects of factors and interactions were considered in this paper, and regression equations were derived using response surface methodology. Finally, the surfaces of the CWEDT parts were examined using scanning electron microscopy (SEM) to identify the macro-ridges and craters on the surface. Cross sections of the EDM parts were examined using the SEM and microhardness tests to quantify the sub-surface recast layers and heat-affected zones under specific process parameters.  相似文献   
47.
In this work, the surface of synthetic nanosized Mg-substituted fluorapatite particles was modified with biodegradable diacid N-trimellitylimido-L-leucine as a coupling agent in methanol. Furthermore, different contents of N-trimellitylimido-L-leucine-modified Mg-substituted fluorapatite were doped into polyvinylpyrrolidone/L-leucine-modified montmorillonite material to prepare novel ternary polyvinylpyrrolidone/modified montmorillonite/N-trimellitylimido-L-leucine-Mg-substituted fluorapatite nanocomposites by an efficient sonication process. Nanocomposite containing 5?wt% modified montmorillonite and 3, 5, and 7?wt% N-trimellitylimido-L-leucine-modified Mg-substituted fluorapatite contents were prepared and labeled as polyvinylpyrrolidone/modified montmorillonite/N-trimellitylimido-L-leucine-Mg-substituted fluorapatite 3, polyvinylpyrrolidone/modified montmorillonite/N-trimellitylimido-L-leucine-Mg-substituted fluorapatite 5, and polyvinylpyrrolidone/modified montmorillonite/N-trimellitylimido-L-leucine-Mg-substituted fluorapatite 7, respectively. The structure and morphology of the aforesaid products were characterized by different analytical apparatuses.  相似文献   
48.
A novel ultra-wideband (UWB)-based microstrip antenna is presented in this work by using a slotted patch resonator, a tri-sectional stepped impedance resonator (SIR) feeder, as well as a reduced ground plane. The whole structure was realized on an FR4 substrate. The impact of incorporating several cases of ground planes on the input reflection has been thoroughly investigated under the same tri-sectional SIR feeder and by employing a slotted patch radiator. Since the complete ground plane presents an inadequate frequency response, by reducing the ground plane, the induced UWB responses are apparent while the antenna exhibits higher impedance bandwidth. The impact of both the uniform impedance resonator (UIR) as well as the SIR feeder on the input reflection has also been examined by following the same adopted reduced ground technique and using a slotted patch radiator. As a result, the UIR feeder exhibits a dual-band frequency response, when a wide notched band is incorporated in the range from 4.5–6.5 GHz. The dual-band response of the bi-sectional SIR feeder is still apparent with a narrower notched band in the frequency range from 4–5 GHz. As far as the tri-sectional SIR feeder is concerned, the UWB response is discernible without recording the existence of a notched band. Additionally, the antenna displays a higher impedance bandwidth compared with the previously reported steps. Our proposed antenna configuration is designed with highly compact dimensions and an overall size of 14 × 27.2 mm2. Moreover, it operates under the impedance bandwidth of 2.86–10.31 GHz that can be leveraged for numerous applications where wireless systems are used. Our approach presents several advantages compared with the other reported UWB-based antennas in the literature, whereas the measured S11 pattern is in good agreement with the simulated one.  相似文献   
49.
50.
This paper addresses the problem of robust controller design for a class of discrete-time switching systems with input saturation. To this aim, the composite nonlinear feedback method is extended to design a robust controller with improved performances in terms of the response speed and overshoot in the presence of disturbances and input saturation. The proposed approach is theoretically analysed and its closed-loop stability is proved. Then, the performance of the proposed method is verified using numerical simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号