首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   2篇
  国内免费   1篇
工业技术   116篇
  2023年   2篇
  2022年   10篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   12篇
  2017年   5篇
  2016年   9篇
  2015年   3篇
  2014年   5篇
  2013年   12篇
  2012年   10篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
21.
The interface plays an important role in improving the mechanical properties of metal matrix composites. Hence, it is essential to evaluate interface bonding of Aluminium/Silicon carbide. The interface bonding of Aluminum/Silicon carbide samples were prepared by various processing temperatures at constant holding time. The interface compounds at the interface were evaluated by an energy dispersive spectroscope and diffusion length of compounds was calculated by Arrhenius equation. The interface structure was analyzed by a scanning electron microscope. The interface characteristics were evaluated by tensile test and microhardness test.  相似文献   
22.

In this paper, we evaluate the bit error rate (BER) performance of a free-space optical satellite downlink by considering the atmospheric turbulence effects using binary shift keying subcarrier intensity modulation and differential phase shift keying subcarrier intensity modulation (DPSK-SIM). The performance of the link is enhanced using aperture averaging and receiver diversity. The closed form mathematical expressions of BER for BPSK-SIM and DPSK-SIM schemes are derived and analyzed. It is observed that on varying the turbulence level, the performance of the link degrades when the turbulence level increases. The improved BER of 10?12 and 10?10 at signal-to-noise ratio of 30 dB of the link for both BPSK-SIM and DPSK-SIM is obtained by using aperture averaging (aperture diameter, D?=?10 cm) and receiver diversity with optimal combining.

  相似文献   
23.
Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.  相似文献   
24.
Magnetic materials are important electronic materials that have a wide range of industrial and commercial applications. Barium strontium hexaferrite (Ba0.5Sr0.5Fe12O19-BSF) were prepared by a sol–gel method using d-Fructose as fuel and the heat treatment was carried out in a microwave furnace. The effects of the sintering temperature on the morphology, crystalline structure and magnetic properties are studied. Sintering temperature affected the grains in compact samples. The sintered product possessed dense microstructure with clear micro grains and is in consistence with the XRD analysis based on the peak intensity of the (107) plane. Magnetic measurement shows that the barium strontium hexaferrite sample sintered at 1,150?°C has the coercive field of 1,998 Gauss, remnant magnetization of 38.87?emu/g and the saturation magnetization of 53.44?emu/g.  相似文献   
25.
Alkylphenols (APs) are ubiquitous contaminants in aquatic environments and have endocrine disrupting and toxic effects on aquatic organisms. To investigate biodegradation mechanisms of APs, an AP degradation gene cluster was cloned from a butylphenol (BP)-degrading bacterium, Pseudomonas putida MT4. The gene cluster consisted of 13 genes named bupBA1A2A3A4A5A6CEHIFG. From the nucleotide sequences, bupA1A2A3A4A5A6 were predicted to encode a multicomponent phenol hydroxylase (PH), whereas bupBCEHIFG were expected to encode meta-cleavage pathway enzymes. A partial sequence of a putative NtrC-type regulatory gene, bupR, was also found upstream of the gene bupB. This result indicates that APs can be initially oxidized into alkylcatechols (ACs), followed by the meta-cleavage of the aromatic rings. To confirm this pathway, AP degradation tests were carried out using the recombinant P. putida KT2440 harboring the PH genes (bupA1A2A3A4A5A6). The recombinant strain oxidized 4-n-APs with an alkyl chain of up to C7 (< or = C7) efficiently and also several BPs including those with an alkyl chain with some degree of branching. Therefore, it was found that PH had a broad substrate specificity for APs with a medium-length alkyl chain (C3-C7). Moreover, the cell extract of a recombinant Escherichia coli harboring bupB (a catechol 2,3-dioxygenase gene) converted 4-n-ACs with an alkyl chain of < or = C9 into yellow meta-cleavage products with a maximum absorbance at 379 nm, indicating that the second step enzyme in this pathway is also responsible for the degradation of ACs with a medium-length alkyl chain. These results suggest that MT4 is a very useful strain in the biodegradation of a wide range of APs with a medium-length alkyl chain, which known nonylphenol-degrading Sphingomonas strains have never degraded.  相似文献   
26.
Post-synthetic modification (PSM) of metal–organic framework (MOF) compounds is a useful technique for preparing new MOFs that can exhibit or enhance many of the properties of the parent MOFs. PSM can be carried out by a number of approaches such as modifying the linker (ligand) and/or metal node, and adsorption/exchange of guest species. The surface environment of the MOF can be modified to increase structural stability as well as introducing desired properties. There is considerable scope in widening the applications of the MOF with compatible metal or ligand employing the PSM. This review focuses on the recent developments of modified materials through PSM, which augers well for the chemical modification and functionalization of MOFs. In this review, different types of PSM methods are presented in an orderly manner, and the diverse applications of resultant frameworks are described and discussed.  相似文献   
27.
28.
Dissimilar metal welding between the austenitic stainless steel and micro-alloyed steel was widely used in high-temperature applications in power stations and petrochemical plants. In the current research, the dissimilar metals between austenitic stainless steel and micro-alloyed steel have been joined by shielded metal arc welding (SMA), gas metal arc welding (GMA), and pulse gas metal arc welding (PGMA) processes. Welded samples of the aforementioned processes were subjected to comparative studies pertaining to the dendrite morphological characteristics. The study reveals that the process parameters affect the growth of dendrite arm because of the variation in the coefficient of thermal conductivity, expansion, and metallurgical incompatibility of the metals. In the PGMA welding process, the dendrite length decreases, while its width increases in all the locations of the weld by varying dimensionless factors ϕ (0.05, 0.15, and 0.25) and keeping its heat input as constant (Ω—11.2 kJ/cm). Among the welded joints, the PGMA weld joint comparatively exhibit shorter length (20 µm) and width (4 µm) of dendrite arm than the welded joints of the GMA and SMA processes. The change in the dendrite dimension is observed to be due to the variation in the dimensionless factor ϕ and the quantity of heat transfer to the weld (QT). The studies have been systematically planned in order to gain advanced scientific knowledge to establish superior technique for multi-pass PGMA welding of thick section of austenitic stainless steel to micro-alloy steel with respect to that used with conventional welding process.  相似文献   
29.
Molecular dosimetry of depurinating DNA adducts of benzo[a]pyrene (BP) offers a promising new approach to determining risk of PAH-induced cancer. Depurinating adducts are the predominant form of BP-induced DNA damage, are excreted in urine and, importantly, are linked to cancer initiation. We have produced a monoclonal antibody (MAb) with high specific affinity for BP-6-N7Gua, a major depurinating DNA adduct of BP, and have developed a sensitive and specific competitive enzyme-linked immunosorbent assay (ELISA). The I50S (quantity producing 50% inhibition of MAb binding in the ELISA) of selected BP adducts and metabolites were determined. The results indicated 1) a high degree of discrimination between BP-6-N7Gua (I50=750 fmol) and BP (I50=900,000 fmol), 2) high affinity of the MAb for BP-6-N7Ade (I50=1,500 fmol), another major depurinating DNA adduct, and 3) specific structural requirements for MAb-adduct binding. In addition, the competitive ELISA provided an accurate determination of BP-6-N7Gua added to normal human urine, at a sensitivity of 200 fmol.  相似文献   
30.
V. Prabu  S. Jayanti 《Energy》2011,36(10):5854-5864
Studies on the growth of three-dimensional cavity geometries in underground coal gasification (UCG) are important in exploiting the large fraction of coal that is present in underground coal seams. In the present study, the cavity formation in UCG has been simulated using experiments carried out in three configurations: (i) sublimation experiments in camphor simulating primarily the heat transfer aspects, (ii) bore hole combustion in Acacia nilotica wood bringing in chemical reaction into play, and (iii) bore hole combustion a coal block bringing into consideration the effect of ash on the cavity formation. In all the three cases, the time-evolution of the cavity shape has been monitored under constant oxygen flow rate conditions by measuring the cavity shape and size at periodic intervals. Results show that the cavity formation rates as well as the shape of the cavity are significantly affected by the oxidant flow rate. The importance of the ash present in the coal on the cavity growth has also been brought out. A fair amount of gasification leading to the formation of H2, CO and CH4 was observed; this is shown to depend both on the inherent moisture as well as on the reaction zone temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号