首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1699篇
  免费   86篇
  国内免费   2篇
工业技术   1787篇
  2024年   4篇
  2023年   25篇
  2022年   94篇
  2021年   89篇
  2020年   50篇
  2019年   58篇
  2018年   55篇
  2017年   45篇
  2016年   61篇
  2015年   47篇
  2014年   76篇
  2013年   110篇
  2012年   98篇
  2011年   123篇
  2010年   79篇
  2009年   62篇
  2008年   84篇
  2007年   70篇
  2006年   42篇
  2005年   47篇
  2004年   44篇
  2003年   41篇
  2002年   29篇
  2001年   18篇
  2000年   26篇
  1999年   23篇
  1998年   64篇
  1997年   47篇
  1996年   35篇
  1995年   28篇
  1994年   19篇
  1993年   18篇
  1992年   6篇
  1991年   3篇
  1990年   8篇
  1989年   4篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1975年   2篇
  1971年   1篇
  1964年   1篇
排序方式: 共有1787条查询结果,搜索用时 0 毫秒
81.
A series of authentic virgin, refined, and mixtures of olive oils was analyzed for their content of 2-and 3-chloropropanediol (MCPD) esters expressed as 2−/3-MCPD, glycidol (and related glycidyl esters) (GE), and diglycerides (DAG). High concentrations of MCPD and GE were found, above all, in pomace oils, which come from the poorer starting raw materials, while virgin olive oils, as expected, do not contain any process contaminant. On the other hand, DAGs are present in all samples, demonstrating that their involvement in the formation of such contaminants only occurs when temperatures are higher than that used during the refining steps. The lack of correlation between the amounts of MCPD and GE can be ascribed to their completely different chemical stability as the epoxy ring of the GE opens easily, leading to both short-chain derivatives and/or MCPD itself. This finding can also explain the data about the absence of 2-MCPD in all the analyzed oil samples: other than the statistical probability and the steric effect of the SN2 formation mechanism, both in favor of the 3- derivative, we have also to consider the MCPD formation pathway involving glycidol that, under opportune conditions of refining, can increase the whole amount of 3-MCPD (under thermodynamic control, 3-MCPD is more stable).  相似文献   
82.
The effect of fluoride on the electrochemical behaviour of titanium was studied. Open circuit potentials, breakdown potentials (E b) and potentiostatic transient currents were measured in synthetic salivas of different compositions. Optical and scanning electron microscopic observations were also made. Results show that the growth rate of Ti oxide layer is affected by fluoride anions and tensile stresses are developed. The OCP/time relationship of Ti immersed in salivas A and B obeys a logarithmic law which depends on the saliva composition. The E b value is influenced by the thickness of the oxide layer, by the composition of the saliva (including fluoride concentration), and by the technique utilised for its evaluation. Thus, results reported in the literature, which seem to be contradictory, could be explained taking into account the experimental conditions assayed. A careful control of the titanium-containing dental materials should be made after long treatments with fluoride-containing prophylactic products or when fluoride-releasing restorative materials are present in the vicinity.  相似文献   
83.
Adhesive pads of geckos contain many thousands of nanoscale spatulae for the adhesion and movement along vertical or inverted surfaces. Setae are composed of interlaced corneous bundles made of small cysteine‐glycine‐rich corneous beta proteins (CBPs, formerly indicated as beta‐keratins), embedded in a matrix material composed of cytoskeletal proteins and lipids. Negatively charged intermediate filament keratins (IFKs) and positively charged CBPs likely interact within setae, aside disulphide bonds, giving rise to a flexible and resistant corneous material. Using differernt antibodies against CBPs and IFKs an updated model of the composition of setae and spatulae is presented. Immunofluorescence and ultrastructural immunogold labeling reveal that one type of neutral serine‐tyrosine‐rich CBP is weakly localized in the setae while it is absent from the spatula. This uncharged protein is mainly present in the thin Oberhautchen layer sustaining the setae, although with a much lower intensity with respect to the cysteine‐rich CBPs. These proteins in the spatula likely originate a positively charged or neutral contact surface with the substrate but the influence of lipids and cytoskeletal proteins present in setae on the mechanism of adhesion is not known. In the spatula, protein‐lipid complexes may impart the pliability for the attachment and adapt to irregular surfaces. The presence of cysteine‐glycine medium rich CBPs and softer IFKs in alpha‐layers sustaining the setae forms a flexible base for compliance of the setae to substrate and improved adhesion.  相似文献   
84.
This paper describes a new multi-heterojunction n +pp photovoltaic infrared photodetector. The device has been developed specifically for operation at temperatures of 200–300K in the long wavelength (8–14 μm) range of the infrared spectrum. The new structure solves the perennial problems of poor quantum efficiency and low dynamic resistance found in conventional long wavelength infrared photovoltaic detectors when operated near room temperature. Computer simulations show that devices with properly optimized multiple heterojunctions are capable of achieving the performance limits imposed by the statistical nature of thermal generation-recombination processes. In order to demonstrate the technology, multiple heterojunction devices have been fabricated on epilayers grown by isothermal vapor phase epitaxy of HgCdTe and in situ As p-type doping. The detector structures were formed using a combination of conventional dry etching, angled ion milling, and angled thermal evaporation for contact metal deposition. These multi-junction n +pp HgCdTe heterostructure devices exhibit performances which make them useful for many applications. D* of optically immersed multiple heterostructure photovoltaic detectors exceeding 108cmHz1/2/W were measured at λ=10.6 μm and T=300K.  相似文献   
85.
The theoretical and experimental performance of Hg1-xCd xTe long wavelength infrared (LWIR) photoconductors fabricated on two-layer heterostructures grown by in situ MOCVD has been studied. It is shown that heterojunction blocking contact (HBC) photoconductors, consisting of wider bandgap Hg1-xCdx Te on an LWIR absorbing layer, give improved responsivity, particularly at higher applied bias, when compared with two-layer photoconductors incorporating n+/n contacts. An extension to existing device models is presented, which takes into account the recombination rate at the heterointerface and separates it from that occurring at both the contact-metal/semiconductor and passivant/semiconductor interfaces. The model requires a numerical solution to the continuity equation, and allows the device responsivity to be calculated as a function of applied electric field. Model predictions indicate that a change in bandgap across the heterointerface corresponding to a compositional change of Δx⩾0.04 essentially eliminates the onset of responsivity saturation due to minority carrier sweepout at high applied bias. Experimental results are presented for frontside-illuminated n-type Hg1-xCdxTe photoconductive detectors with either n+/n contacts or heterojunction blocking contacts. The devices are fabricated on a two-layer in situ grown MOCVD Hg1-xCdxTe wafer with a capping layer of x=0.31 and an LWIR absorbing layer of x=0.22. The experimental data clearly demonstrates the difficulty of forming n +/n blocking contacts on LWIR material, and indicates that heterojunctions are the only viable technology for forming effective blocking contacts to narrow bandgap semiconductors  相似文献   
86.
A quantitative mobility spectrum analysis (QMSA) of experimental Hall and resistivity data as a function of magnetic field is presented. This technique enables the conductivity contribution of bulk majority carriers to be separated from that of other species such as thermally generated minority carriers, electrons, and holes populating n and p doped regions, respectively, and two-dimensional species at surfaces and interface layers. Starting with a suitable first trial function such as the Beck and Anderson mobility spectrum analysis (MSA), a variation on the iterative procedure of Dziuba and Gorska is used to obtain a mobility spectrum which enables the various carrier species present in the sample to be identified. The QMSA algorithm combines the fully automated execution and visually meaningful output format of MSA with the quantitative accuracy of the conventional least-squares multi-carrier fitting procedure. Examples of applications to HgCdTe infrared detector materials and InAs/GaSb quantum wells are discussed. The ultimate goal of this paper is to provide an automated, universal algorithm which may be used routinely in the analysis and interpretation of magneto-transport data for diverse semiconductor materials and bandgap engineered structures.  相似文献   
87.
Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium‐based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high‐strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low‐voltage regime (from 0.1 to 5 V), with long‐term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm?2), high electrochemical capacitance (≈mF g?1), and minimal mechanical stress at the polymer/metal composite interface upon deformation.  相似文献   
88.
The development of artificial vesicles into responsive architectures capable of sensing the biological environment and simultaneously signaling the presence of a specific target molecule is a key challenge in a range of biomedical applications from drug delivery to diagnostic tools. Herein, the rational design of biomimetic DNA-grafted quatsome (QS) nanovesicles capable of translating the binding of a target molecule to amphiphilic DNA probes into an optical output is presented. QSs are synthetic lipid-based nanovesicles able to confine multiple organic dyes at the nanoscale, resulting in ultra-bright soft materials with attractiveness for sensing applications. Dye-loaded QS nanovesicles of different composition and surface charge are grafted with fluorescent amphiphilic nucleic acid-based probes to produce programmable FRET-active nanovesicles that operate as highly sensitive signal transducers. The photophysical properties of the DNA-grafted nanovesicles are characterized and the highly selective, ratiometric detection of clinically relevant microRNAs with sensitivity in the low nanomolar range are demonstrated. The potential applications of responsive QS nanovesicles for biosensing applications but also as functional nanodevices for targeted biomedical applications is envisaged.  相似文献   
89.
Magnesium is a promising candidate as a solid fuel for energetic applications, however, the diffusion-controlled oxidation mechanism impedes its reaction with an oxidizer, often resulting in diminished performance. In this study, non-thermal plasma processing is implemented to modify the surface of magnesium nanoparticles with silicon in-flight, in the gas-phase to enhance the rate of interfacial reactions and tune the ignition pathways. Allowing the silicon coating to partially oxidize provides direct contact between the fuel and oxidizer, resulting in a nanostructured thermite system at the single particle level. The proximal distance between oxidizer and fuel directly impacts the ignition temperature and, therefore, the combustion kinetics. An intermetallic reaction occurs within the magnesium/silicon system to supplement the heating of the magnesium fuel to initiate its reaction with the oxidizer, resulting in highly reduced ignition thresholds. The ignition temperature is lowered significantly from ≈740 °C for magnesium particles with a native oxide layer to ≈520 °C for particles coated via the in-flight plasma process.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号