首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   5篇
  国内免费   8篇
工业技术   41篇
  2023年   4篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   7篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
11.
通过研究基于临时键合与解键合工艺的GaN、InP等材料无损剥离和晶圆级柔性集成等关键技术,提出了解决当前柔性化合物半导体器件普遍存在的转移后器件性能退化严重和大面积批量制造困难等问题的方案,制备出100 mm(4英寸)柔性GaN HEMT器件和75 mm (3英寸)InP HBT器件。其中,柔性GaN HEMT器件的饱和电流衰减仅为8.6%,柔性InP HBT器件的电流增益截止频率和最高振荡频率分别达到了358 GHz和530 GHz。表明采用本文介绍的柔性化方法制备的柔性电子器件在高频大功率等领域具有较好的应用前景。  相似文献   
12.
氮化镓(GaN)基功率器件性能的充分发挥受到沉积GaN的衬底低热导率的限制,具有高热导率的化学气相沉积(CVD)金刚石,成为GaN功率器件热扩散衬底材料的优良选择。相关学者在高导热金刚石与GaN器件结合技术方面开展了多项技术研究,主要包括低温键合技术、GaN外延层背面直接生长金刚石的衬底转移技术、单晶金刚石外延GaN技术和高导热金刚石钝化层散热技术。对GaN功率器件散热瓶颈的原因进行了详细评述,并对上述各项技术的优缺点进行了系统分析和评述,揭示了各类散热技术的热设计工艺开发和面临的技术挑战,并认为低温键合技术具有制备温度低、金刚石衬底导热性能可控的优势,但是大尺寸金刚石衬底的高精度加工和较差的界面结合强度对低温键合技术提出挑战。GaN外延层背面直接生长金刚石则具有良好的界面结合强度,但是涉及到高温、晶圆应力大、界面热阻高等技术难点。单晶金刚石外延GaN技术和高导热金刚石钝化层散热技术则分别受到单晶金刚石尺寸小、成本高和工艺不兼容的限制。因此,开发低成本大尺寸金刚石衬底,提高晶圆应力控制技术和界面结合强度,降低界面热阻,提高金刚石衬底GaN器件性能方面,将是未来金刚石与GaN器件结合技术发展的重点。  相似文献   
13.
微波光子芯片是支撑微波光子学发展的基石。针对微波光子芯片材料体系多样、难以多功能集成等问题,异质/异构集成技术提供了一种有效途径。该技术可将不同材料体系的最优性能器件集成到同一芯片上,大大扩展微波光子芯片的功能,降低微波光子功能模块的体积、重量,并提高其性能稳定性。本文介绍了目前主流的微波光子异质/异构集成技术和光电混合集成方面的主要研究进展,并对未来发展趋势进行展望。  相似文献   
14.
15.
采用高温Hall测量仪对一个全应变和一个部分应变弛豫的AlGaN/GaN异质结构中2DEG的高温输运特性进行了研究,温度变化范围从室温到680K.研究结果表明:在高温段2DEG的迁移率主要受LO声子散射限制; 在室温,异质界面处的非均匀压电极化场对2DEG迁移率的散射也是一个主要的散射机制.同时,计算结果显示,随着温度升高,更多的电子跃迁到更高的子带,在更高的子带,其波函数逐渐扩展到AlGaN层内部以及GaN体内更深的位置,导致LO声子散射的屏蔽效应减弱且来自AlGaN层内的合金无序散射增强.  相似文献   
16.
针对传统SiC衬底GaN器件高功率密度工作时的热积累问题,开展基于芯片内部嵌入高热导率材料的GaN器件芯片级热管理技术研究。在实现工艺兼容性的基础上,采用反应离子刻蚀技术对GaN器件有源区下端的SiC衬底进行深孔刻蚀工艺研究,系统地分析了刻蚀气体、射频功率及腔室压强等工艺参数对刻蚀速率的影响,并结合能谱对刻蚀表面的质量和损伤进行分析。实验发现射频功率仅能影响刻蚀速率,而刻蚀气体和压强不仅影响其刻蚀速率,还影响其刻蚀表面质量。最终提出了一种基于反应离子刻蚀技术的SiC深孔刻蚀方法,对器件热管理和SiC深孔刻蚀技术具有重要的指导意义。  相似文献   
17.
GaN高电子迁移率晶体管(HEMT)以其复杂的器件特性使其大信号建模变得十分困难,尽管EEHEMT、Angelov等模型结构曾经成功应用于GaAs HEMT/MESFET的大信号模型,但当它们被用于GaN HEMT建模时却不再准确和完备.面向GaN HEMT器件的大信号模型,本文提出了一种紧凑的模型拓扑,此模型拓扑综合了GaN HEMT器件的直流电压-电流(I-V)特性、非线性电容、寄生参数、栅延迟漏延迟与电流崩塌、自热效应以及噪声等特性.经验证此模型拓扑在仿真中具有很好的收敛性,适用于GaN HEMT器件的大信号模型的建立,满足GaN基微波电路设计对器件模型的需求.  相似文献   
18.
Ku-band GaN power transistor with output power over 100 W under the pulsed operation mode is presented. A high temperature AlN nucleation together with an Fe doped GaN buffer was introduced for the developed GaN HEMT. The AlGaN/GaN hetero-structure deposited on 3 inch SiC substrate exhibited a 2DEG hall mobility and density of ~2100 cm2/(V·s) and 1.0×1013 cm-2, respectively, at room temperature. Dual field plates were introduced to the designed 0.25 μm GaN HEMT and the source connected field plate was optimized for minimizing the peak field plate near the drain side of the gate, while maintaining excellent power gain performance for Ku-band application. The load-pull measurement at 14 GHz showed a power density of 5.2 W/mm for the fabricated 400 μm gate periphery GaN HEMT operated at a drain bias of 28 V. A Ku-band internally matched GaN power transistor was developed with two 10.8 mm gate periphery GaN HEMT chips combined. The GaN power transistor exhibited an output power of 102 W at 13.3 GHz and 32 V operating voltage under pulsed operation mode with a pulse width of 100 μs and duty cycle of 10%. The associated power gain and power added efficiency were 9.2 dB and 48%, respectively. To the best of the authors'' knowledge, the PAE is the highest for Ku-band GaN power transistor with over 100 W output power.  相似文献   
19.
基于硅基铌酸锂薄膜(Lithium Niobate on insulator,LNOI)材料平台,设计并制备了高速电光开关芯片,并实现了芯片的光纤耦合、管壳封装和性能测试。测试结果表明,该高速电光开关器件的开关速度达到13.4 ns,消光比达到31.8 dB。研究工作对未来研制光学延时芯片和波束形成网络芯片具有重要的支撑意义。  相似文献   
20.
通过PL谱和Raman谱对MOCVD生长Si基AlN的深陷阱中心进行了研究,发现三个深能级Et1,Et2,Et3,分别在Ev上2.61,3.10,2.11eV.Et1是由氧杂质和氮空位(或Al间隙原子)能级峰位靠近重合共同引起的,Et2、Et3都是由于衬底Si原子扩散到AlN引起的.在Si浓度较低时,Si主要以取代Al原子的方式存在,产生深陷阱中心Et2.Si浓度高于某个临界浓度时,部分Si原子以取代N原子位置的方式存在,形成深陷阱中心Et3.实验还表明,即使经高温长时间退火,AlN中Et1和Et2两个深陷阱中心也是稳定的.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号