首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   9篇
  国内免费   15篇
工业技术   116篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2016年   4篇
  2014年   1篇
  2013年   3篇
  2012年   14篇
  2011年   12篇
  2010年   8篇
  2009年   6篇
  2007年   6篇
  2006年   11篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   5篇
  1995年   1篇
  1994年   8篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
排序方式: 共有116条查询结果,搜索用时 0 毫秒
41.
低温烧结介质基板材料研究进展   总被引:3,自引:2,他引:1  
从陶瓷基介质材料和微晶玻璃基介质材料两个方面进行综述,介绍了几种低温烧结介质基板材料的国内外研究进展,研究了低温烧结介质基板材料与内电极的异相匹配共烧的重要性,探讨了低温烧结介质基板材料主要存在的问题和发展趋势。  相似文献   
42.
研究了锌硼玻璃掺杂量对低压ZnO压敏电阻微观结构和电性能的影响.结果表明,当掺杂量x=0.1wt%时,可以得到较好综合性能的ZnO压敏电阻:E1mA=36.7V/mm,α=30.4,IL=0.1μA.并应用晶粒生长动力学唯象理论研究了锌硼玻璃掺杂低压ZnO压敏电阻的晶粒生长规律,探讨了锌硼玻璃掺杂对低压ZnO压敏陶瓷晶粒生长的作用机理.当烧结温度T≤1000℃时,其晶粒生长动力学指数n≈4.54,激活能Q≈316.5kJ/mol,这是由于未熔融的锌硼玻璃通过颗粒阻滞机理阻碍了ZnO压敏陶瓷晶粒的生长;而当T1000℃时,其晶粒生长动力学指数n≈2.92,激活能Q=187kJ/mol,这是由于熔融的锌硼玻璃通过液相烧结机理促进了晶粒的生长.  相似文献   
43.
3G移动通信事业的迅速发展对应用于基站的微波介质谐振器陶瓷材料的Q值提出了更高的要求。Ba(Zn1/3Nb2/3)O3微波介质陶瓷材料因为具有很高的Q值、接近于零的τf和适宜的εr而备受关注。介绍了Ba(Zn1/3Nb2/3)O3系列微波介质陶瓷的结构和性能、改性研究、纳米化制备工艺及Ba(Zn1/3Nb2/3)O3-Ba(Co1/3Nb2/3)O3复合技术,以期对该领域其他研究者有所帮助。  相似文献   
44.
用固相反应法在1150℃烧结2h得到了致密的(1-x)ZnWO4-xTiO2 (0.1≤x≤0.8)系列微波介质陶瓷,对陶瓷的相组成、显微结构及微波介电性能进行了研究.结果表明:在(1-x)ZnWO4-xTiO2 (0.3≤x≤0.5)陶瓷样品中存在ZnWO4、TiO2及Zn2TiO4三相,当Zn2TiO4相的量较多时,样品的微波介电性能较好.随着TiO2的含量增加,(1-x) ZnWO4-xTiO2陶瓷的εr及τf值单调递增,而Q·f值则先上升后下降.当x=0.4时,(1-x)ZnWO4-xTiO2陶瓷样品的微波介电性能为:εr=26.56、Q·f=42 278 GHz及τf =61.37× 10-6/℃.它是一种具有中等介电常数,中低烧结温度且性能优良的微波介质陶瓷新体系.  相似文献   
45.
从理论上分析了开路支节加载双频谐振器的谐振模式,通过在谐振器末端加载变容二极管的方式,设计了一款双通带独立可调谐滤波器。通过调节谐振器末端变容二极管电容值大小来改变通带的中心频率,通过调节支节末端的变容二极管来调节通带的带宽。该滤波器的两个通带之间相互独立,调谐其中一个通带对另一个通带几乎没有影响。通过引入源与负载的耦合,使得双通带两侧各产生一个传输零点,提高了滤波器的选择性和带外抑制能力。最终设计出的滤波器第一通带的中心频率在1.08~1.19 GHz之间连续可调,绝对带宽在112~152 MHz之间连续可调;第二通带中心频率在2.07~2.22 GHz 之间连续可调,其绝对带宽在132~189 MHz 之间连续可调。在调谐过程中,通过调节中心开路支节末端变容二极管加载直流电压大小,实现调谐过程两通带带宽基本维持不变。  相似文献   
46.
SiO2掺杂对PMS-PZT陶瓷结构和电性能的影响   总被引:3,自引:1,他引:3  
对Pb0.98Sr0.02(Mn1/3Sb2/3)0.1Zr0.47Ti0.43O3(简称PMS-PZT)+w(SiO2)(0≤w≤0.6%)三元系压电陶瓷材料的微观结构和电性能进行了研究。XRD图谱表明室温下该材料为钙钛矿结构,并随SiO2掺杂物的加入材料由四方相向三方相转变。实验结果表明:当w(SiO2)为0.1%时,在1300℃,1h条件下烧结,能获得较好的综合性能:εr为1642,tgδ为0.0043,kp为0.57,Qm为1553,d33为325pC·N–1,可以满足压电电动机和压电变压器等高功率应用方面的要求。  相似文献   
47.
以Al_2O_3陶瓷粉为原料,采用立体光固化成型技术制备微波介质谐振器和滤波器;采用扫描电子显微镜(SEM)表征材料的形貌,用阿基米德排水法对材料致密度进行了测试,用平行板谐振法对谐振器微波性能进行测试;通过调控陶瓷膏料中有机成分(反应单体、反应稀释剂、分散剂、光引发剂等)和无机成分(Al_2O_3及其掺杂)的比例,对打印参数和烧结曲线进行控制,实现了Al_2O_3谐振器成型精度的精确控制。结果表明:当激光器功率500 mW,扫描速率2500 mm/min,材料固含量60%(体积分数),脱脂温度600℃,排胶速率1℃/min,烧结温度1700℃时,可以实现97.5%的理论密度,相对介电常数9.8,Q·f值20184.25 GHz(f=12.11 GHz),满足实际应用需求。这为制备复杂结构的微波无源器件提供了新的潜在技术途径。  相似文献   
48.
该文以氟化锂(LiF)为烧结助剂,通过热压烧结(HP)的方式制备出钇铝石榴石(Y_3Al_5O_(12),YAG)透明陶瓷。表征了YAG透明陶瓷的光学性能及微观结构,并结合电化学阻抗谱进一步分析了LiF对热压烧结YAG陶瓷性能的影响。结果表明,LiF作为烧结助剂有利于促进YAG陶瓷晶粒的增长,有助于提高YAG陶瓷的致密度;阻抗谱分析显示,添加较多LiF的YAG陶瓷的晶界电阻较大,这表明LiF有助于晶界处"碳污染"等杂质的排除。当w(LiF)=1.0%时,通过真空热压烧结在1 450℃、50 MPa保温1 h可以制备出高性能的YAG透明陶瓷,样品在400 nm波长处直线透过率为58%,在1 100 nm波长处直线透过率为68%,在2 500 nm波长处直线透过率达到75%。  相似文献   
49.
PTCR 阻温特性曲线数据处理程序   总被引:2,自引:0,他引:2  
采用TurboC语言编程,完成对PTCR阻温特性测试数据的参数计算、曲线拟合及打印输出等多项功能,同时还可对手工测试数据进行处理,能够游标读数及手工修正等。  相似文献   
50.
In order to get high-performance low voltage varistors, Cr2O3 doped ZnO ceramic thick films were fabricated by modified sol-gel process. The precursors were fabricated by dispersing doped-ZnO ceramic nano-powders in the sols, which were prepared by dissolving zinc acetate dihydrate into 2-methoxyethanol and stabilized by diethanolamine and glacial acetic acid and doped with a concentrated solution of bismuth nitrate, phenylstibonic acid, cobalt nitrate, manganese acetate and chromium nitrate. The results show that ZnCr2O4 phase can form in ZnO based ceramic films doped 1.0% (mole fraction) Cr2O3. Three secondary phases, such as Bi2o3, Zn7Sb2O12, and ZnCr2O4 phases, are detected in the thick films. The Raman spectra show that the intensity and the position of Raman bands of Zn7Sb2O12 and ZnCr2O4 phases change obviously with increasing Cr203 doping. The nonlinearity coefficient α of ZnO thick films is 7.0, the nonlinear voltage is 6 V, and the leakage current density is 0.7 μA/mm^2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号