首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   20篇
  国内免费   80篇
数理化   173篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2015年   1篇
  2014年   5篇
  2012年   6篇
  2011年   2篇
  2010年   2篇
  2009年   8篇
  2008年   4篇
  2007年   4篇
  2006年   11篇
  2005年   8篇
  2004年   9篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  2000年   11篇
  1999年   16篇
  1998年   5篇
  1997年   6篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1992年   14篇
  1991年   3篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1959年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
31.
锂电池用草酸二氟硼酸锂有机电解液的电化学性能   总被引:1,自引:0,他引:1  
邓凌峰  陈洪 《无机化学学报》2009,25(9):1646-1650
以草酸锂和三氟化硼乙醚溶液合成了草酸二氟硼酸锂(LiBC2O4F2),并用碳酸二甲酯溶剂萃取和重结晶提纯。LiBC2O4F2有机电解液能在铝箔上形成一层致密的保护膜,这能较好地抑制在高电位时电解液在铝箔上发生氧化反应,而且在很宽的温度范围内LiBC2O4F2基电解液都具有较好的离子电导率。电化学测试结果表明:使用1.0 mol·L-1 LiBC2O4F2有机电解液的LiMn2O4/Li电池首次放电容量为110.2 mAh·g-1,并且具有比使用LiPF6有机电解液的LiMn2O4/Li电池更好的高低温循环性能和更优良的低温放电性能。  相似文献   
32.
为了提高复杂环境条件下永磁同步电机(PMSM)控制器的动态控制性能与抗干扰能力,分析了永磁同步电机的速度-电流(或力矩)双闭环控制调速结构,提出了一种基于模糊PID控制原理的速度环控制策略。速度环运行时,模糊PID控制器首先将永磁同步电机转速的误差及误差变化率进行模糊化处理,然后依据模糊规则进行模糊推理,并自动在线整定出速度环PID的三个系数(比例系数、积分系数、微分系数),不仅减少了速度环的调节时间,也能增强抵御来自电流环(或力矩环)的干扰。仿真结果表明,当永磁同步电机的转速发生变化或负载发生扰动时,相比于传统的PID控制器,模糊PID控制器能提高系统的动态性能与鲁棒性。该方法用于永磁同步电机的控制是可行、有效的。  相似文献   
33.
通过荧光光谱、动/静态激光光散射研究了疏水缔合聚丙烯酰胺(HAPAM)自组装行为及双子表面活性剂(双十四酸乙二酯双磺酸盐(DMES-14))对其的影响.实验结果表明:聚合物HAPAM在溶液中能够通过自组装形成疏水微区,表现出芘的发射光谱中第一振动峰(373nm)与第三振动峰(383nm)的荧光强度之比(I1/I3)值随聚合物浓度的增大而下降,当聚合物HAPAM浓度(CP)达到一定值后,I1/I3值不再变化;当加入表面活性剂时,HAPAM能够与双子表面活性剂在溶液中形成混合胶束,在聚合物浓度一定时,I1/I3值随表面活性剂浓度(CS)的增大急速下降,当表面活性剂浓度达到30mg·L-1时,I1/I3值趋于恒定;当表面活性剂浓度一定时,聚合物/表面活性剂二元体系中聚集体的聚集数随HAPAM浓度的增大出现先下降再增加的过程;一定量的双子表面活性剂对HAPAM分子间的缔合起促进作用,过量的双子表面活性剂对HAPAM分子间的缔合起抑制作用,使HAPAM的表观重均分子量(Mw,a)、均方根回转半径()和流体力学半径()随表面活性剂浓度增加先增大后减小,而HAPAM的/比值则随表面活性剂浓度增大出现一定程度的上升,表明HAPAM分子链段变得相对舒展.  相似文献   
34.
芯片毛细管电泳-激光诱导荧光-电荷耦合器件检测系统   总被引:2,自引:0,他引:2  
采用自组建的芯片毛细管电泳-激光诱导荧光-电荷耦合器件(CCD)检测系统在数十秒内满意地分离了曙红和荧光素。设计了一种进样、分 离电路,可以有效地消除进样通道的样品溶液向分离通道的渗漏。解决了由这种渗漏所引起的电泳峰变宽、拖尾等问题。提高了芯片毛细管电泳的分辨率和分离效率。  相似文献   
35.
引入晶粒边界修正,改进了Mo2C膜表面粗糙化物理模型,将DT2模型推广到包括有温度的情况,对Mo2C膜表面形态进行计算机模拟并统计模拟图的高度分布,确定表面粗糙度随沉积时间和基底温度的变化规律。结果表明:引入晶粒边界修正大大促进了理论与实验结果的一致,Mo2C膜表面粗糙化属快速粗造化,粗造度随基底温度升高而非线性地增大。  相似文献   
36.
微波辐射法制备N-亚水杨基壳聚糖Schiff碱及其吸附性能的研究;壳聚糖;微波辐射;水杨醛;Schiff碱  相似文献   
37.
人工光合作用可直接将二氧化碳转化为一系列碳氢化合物,实现大气中的碳循环,被视为一种既能解决能源短缺又能减少温室气体,进而改善人类生存环境的新型绿色技术.光催化二氧化碳还原体系需要合适的耦合氧化还原反应,以及对外界光源的有效利用以产生足够电子参与反应,因此构建高催化活性和高选择性的催化体系仍然面临着巨大挑战.此外,二维纳米结构(2D)由于具有比表面积大、离子的迁移路径短以及独特的平层电子转移轨道等特性,被证实有利于光催化还原CO2过程.其中,Bi3NbO7特殊的片层结构和合适的能带位置,使其在光催化还原CO2反应中表现出良好的催化性能.然而,Bi3NbO7的光生载流子易复合及反应中光腐蚀严重等缺陷导致其光利用率较低,限制了其实际应用.因此,构建S-型异质结是提高复合材料光催化活性的一种有前途的策略.S-型异质结不仅能有效地分离光生电子和空穴,而且这一电子转移过程赋予了复合物最大的氧化还原能力.同时,S-型光催化体系不仅拥有同样的强氧化和强还原能力,还可显著抑制副反应的发生及副产物的产生,有利于CO2还原反应的高选择性进行.本文利用简易的溶剂热法制备了一系列S-型Bi3NbO7/g-C3N4(BNO/UCN)异质结光催化剂,与其纯组分催化剂相比,表现出优异的光催化还原CO2活性,g-C3N4含量为80wt%的BNO/UCN-3光催化剂催化CO2生成CH4产率为37.59μmol·g-1h-1,是g-C3N4的15倍,CH4选择性为90%;且循环反应10次后仍保持较高的活性及CH4选择性.光催化活性及选择性的显著增强是由于二维分布的纳米结构和S-型电荷转移路径.在可见光照射下,界面内建电场、带边缘弯曲和库仑相互作用协同促进了复合物相对无用的电子和空穴的复合.因此,剩余的电子和空穴具有较高的还原性和氧化性,使复合材料具有较高的氧化还原能力.自由基捕获实验、电子顺磁共振实验和原位X射线光电子能谱实验结果表明,光催化剂中的电子迁移遵循S-型异质结机理.综上,本文不仅为新型S-型异质结CO2还原光催化剂的设计和制备提供了新方法,而且为未来解决能源短缺及实现碳中和目标提供一定的实验及理论依据.  相似文献   
38.
采用NaA膜对三聚甲醛溶液渗透汽化脱水,对比了不同温度下渗透通量和分离性能的变化,研究了甲醛对混合物脱水分离的影响。结果表明NaA膜可将三聚甲醛和水的二元体系含水量从32 wt%降至0.15 wt%,将三聚甲醛、甲醛和水三元体系的含水量从28wt%降至1.5wt%,表现出了良好的分离性能;同时使用NaA膜渗透汽化技术无需添加萃取剂,并解决了三聚甲醛溶液共沸分离的难题。  相似文献   
39.
在相对论的框架下, 基于有效拉氏量, 在单π和单ρ介子交换的机制下, 我们推导了高能质子-质子碰撞过程中五夸克态产生过程反应截面. 利用已知的经验耦合常数和顶角形状因子, 研究了N*(1710)核子激发态对反应截面的影响, 发现ρ介子交换在这些过程中起主导作用. 包括中间核子态N*(1710)在质心能量为4GeV附近, 使反应截面增大几十倍, 其贡献是不可忽视的.  相似文献   
40.
磁性薄膜热动力学性质的变分累积展开研究   总被引:8,自引:0,他引:8       下载免费PDF全文
陈洪  阎玉立  梅花 《物理学报》2003,52(10):2607-2611
采用变分累积展开方法,研究了立方格点上磁性薄膜的热动力学性质.计算自发磁化强度、 内能和热容到了三级累积展开,并对每一级给出了这些物理量对薄膜原子层数的依赖关系. 虽然变分累积展开的收敛性还没有严格证明,但计算结果显示这些物理量的变分累积展开收 敛很快.三级计算结果足已表明:对低于某一临界厚度的薄膜,自发磁化强度随原子层数的 减少而减小;不论在临界温度以下,还是在临界温度以上,每单位格点的内能都随原子层数 的减少而增大;每单位格点的热容在临界温度以下随原子层数的减少而增大,但在临界温度 以上随原子层数的减 关键词: 磁性薄膜 热动力学性质 变分累积展开  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号