首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   772篇
  免费   238篇
  国内免费   223篇
数理化   1233篇
  2024年   7篇
  2023年   29篇
  2022年   44篇
  2021年   24篇
  2020年   16篇
  2019年   27篇
  2018年   33篇
  2017年   35篇
  2016年   40篇
  2015年   26篇
  2014年   68篇
  2013年   49篇
  2012年   33篇
  2011年   23篇
  2010年   44篇
  2009年   40篇
  2008年   47篇
  2007年   45篇
  2006年   42篇
  2005年   33篇
  2004年   35篇
  2003年   45篇
  2002年   30篇
  2001年   27篇
  2000年   35篇
  1999年   27篇
  1998年   40篇
  1997年   28篇
  1996年   23篇
  1995年   29篇
  1994年   25篇
  1993年   16篇
  1992年   14篇
  1991年   23篇
  1990年   21篇
  1989年   18篇
  1988年   6篇
  1987年   9篇
  1986年   8篇
  1985年   7篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1965年   4篇
  1962年   3篇
  1960年   4篇
  1958年   5篇
  1955年   3篇
排序方式: 共有1233条查询结果,搜索用时 15 毫秒
81.
首先采用格氏试剂法合成了甲基三苯乙炔基硅烷(MTPES),通过傅里叶变换红外光谱(FT-IR)、核磁共振氢谱(1 H-NMR)对其结构进行了表征。然后以MTPES和4,4’-二叠氮甲基联苯(BAMBP)为原料制备了新型聚三唑树脂(MPTA)。利用FT-IR和差示扫描量热(DSC)研究了MPTA树脂的固化行为,通过动态力学热分析(DMA)和热重分析(TG)研究了炔基与叠氮基配比对树脂热性能的影响,并通过测试凝胶时间随贮存时间的变化研究了树脂及其四氢呋喃(THF)溶液的贮存稳定性。结果表明,固化后的树脂玻璃化转变温度(Tg)达到236℃,在氮气中的5%热失重温度(T_(d5))在320℃左右。MPTA树脂在35℃和25℃下分别贮存7d和20d后,100℃下树脂的凝胶时间分别为40min和25min,MPTA树脂的THF溶液在同样条件下贮存28d后,凝胶时间分别为54min和61min,具有比现有聚三唑树脂更好的贮存稳定性。单向T700碳纤维-MPTA复合材料常温下的弯曲强度为1 660 MPa,弯曲模量为129 GPa,150℃下的弯曲强度保留率为70%。  相似文献   
82.
采用预共聚法,以含硅芳炔树脂(PSA)和端乙炔基聚醚酰亚胺(PEI)为原料,制备了端乙炔基聚醚酰亚胺改性的含硅芳炔(PEI-PSA)树脂及其与T300碳纤维平纹布的复合材料T300/PEI-PSA。通过动态热机械分析(DMA)和X射线能谱仪(EDS)研究了溶剂、溶液浓度、反应温度对预共聚反应的影响,确定了预共聚反应的最佳条件,得到了均匀分散的PEI-PSA树脂。通过红外光谱(FT-IR)、核磁共振氢谱(1 H-NMR)、差示扫描量热(DSC)、热失重(TG)、DMA和EDS等表征了PEI、PEI-PSA树脂及T300/PEI-PSA复合材料的结构和性能。结果表明,当PEI质量分数为20%时,PEI-PSA树脂浇铸体的弯曲强度达44.5 MPa,较PSA树脂浇铸体提高了90.2%;T300/PEI-PSA复合材料的弯曲强度达602.7 MPa,较T300/PSA复合材料的弯曲强度提高了124%。  相似文献   
83.
在混合溶剂中通过"grafting to"的方法将2种分子量不同的聚乙二醇单甲醚(MPEG M_w=750,4000)接枝到氨基修饰的St?ber法二氧化硅(SiO_2-NH_2)表面,制备双分布纳米接枝复合物.采用二步法,先将带环氧端基的低分子量聚乙二醇单甲醚(MPEG-EO)与SiO_2-NH_2在甲苯溶剂中充分反应后,与高分子量的MPEG-EO在甲苯和正癸烷的混合溶剂中使用相同的反应条件和后处理方法,能便捷制备出具有双分布接枝的纳米复合物.在接枝反应体系中,分子链的链段尺寸和接枝密度之间存在着密切关系.一定的范围内,接枝密度随链段尺寸减小而增大.通过改变混合溶剂比例来调控接枝链段的尺寸,可以很好控制聚合物的接枝密度.在双分布接枝的纳米复合物中,低分子量的接枝密度为0.85 chains/nm~2,高分子量的接枝密度能达到0.40 chains/nm~2,体现出了简单、高效、可控的特点,与聚环氧乙烷(PEO)共混后分散良好,对于制备出均匀分散的纳米复合材料起到了一定的指导作用.  相似文献   
84.
依据模糊子群与子群列之间的关系,通过分析具有极大循环子群的P-群的子群列的构造特点,给出了能够反映具有极大循环子群的P-群的模糊子群构造特征的模糊子群的阶、极大模糊子群和模糊子群的等价类数的计算公式.  相似文献   
85.
三氧化二铝短纤维对ZA22合金干摩擦磨损性能的影响   总被引:5,自引:4,他引:5  
针对无油润滑场合的实际需要,采用挤压铸造法制取了Al2O3短纤维强化ZA22合金复合材料,并对其在干摩擦条件下的摩擦磨损性能进行了试验研究,同时还用扫描电子显微镜对试样磨损表面形貌进行了观察,进而对材料的磨损机理作了分析与讨论。结果表明,随着Al2O3短纤维含量的增大,ZA22/Al2O3复合材料的耐磨性能提高,但摩擦性能降低;当纤维取向垂直于摩擦而时,复合材料的摩擦磨损性能比纤维平行于摩擦面取向  相似文献   
86.
给出利用本征正交分解(POD)对屋盖风压场进行重建和预测的研究结果.对一个双坡屋盖用同步多点压力扫描系统进行了风洞试验,根据POD技术采用前若干阶本征模态重建屋盖风压场.采用两种方案预测未布置测压点位置的风压时间序列.第一种方案中利用插值技术获得没有测压点位置的本征模态值.第二种方案对参考屋盖和需预测的新屋盖分别进行试验,结合由参考屋盖试验萃取的本征模态和由新屋盖试验的风压数据计算的主坐标,预测出新屋盖未知区域的风压时间序列.文中对风压场重建和预测的效果作了分析,而且比较了根据测量的风压数据和预测的风压数据所计算的屋盖风致响应.  相似文献   
87.
周年杰  黄伟其  苗信建  王刚  董泰阁  黄忠梅  尹君 《物理学报》2015,64(6):64208-064208
光子晶体不仅可以用来调控自发辐射, 还可以用来控制光的传输和局域. 采用平面波展开法进行模拟计算, 分析硅背景下的二维正方、三角晶格光子晶体散射基元的形状和空间取向对光子禁带的影响. 计算结果表明: 对称性和量子受限效应之间的竞争是导致光子晶体禁带宽度发生变化的原因.  相似文献   
88.
在NaOH存在下室温研磨查尔酮与丙二腈,可以有效地得到1,3,5-三芳基-2-芳酰基环己醇衍生物,本合成方法反应时间短、操作简单、产率高,符合绿色化学特点.产物结构经过红外、核磁、元素分析和高分辨质谱确证,并对3b做了单晶衍射测定.  相似文献   
89.
在氩气气氛和1173 K保温条件下对La0.63 Gd0.2 Mg0.17Ni3.1 Co0.3 Al0.1储氢合金进行不同时间(t=8 ~168 h)的热处理,采用电感耦合等离子发射光谱(ICP)、X射线衍射(XRD)、电子探针显微分析方法(EPMA)和电化学测试分析方法对比研究了退火时间对合金显微组织演化和电化学性能的影响.研究结果表明,铸态合金组织由Ce2 Ni7型、Gd2Co7型、Pr5 Co19型、PuNi3型和CaCu5型相组成,其Ce2 Ni7型相的丰度为78.9%,随退火时间的延长,退火合金中Ce2 Ni7型相的丰度逐渐增加,当退火时间t=168 h时其相丰度达到94.5%,Ce2 Ni7型相结构的晶胞参数和晶胞体积随退火时间增加而减小.电化学测试分析表明,退火合金电极的电化学性能与Ce2 Ni7型相的丰度有密切关系,退火时间对合金电极的活化性能影响不大,但合金电极放电容量随退火时间的延长逐渐提高,当t=168 h时,合金电极放电容量达到最大值386.8mAh·g-1;退火时间对合金电极循环稳定性的提高和改善有不同程度的影响,当退火时间t=16~168 h时,经100次充放电循环后,其电极容量保持率S100=90.3%~91.5%.热处理能有效改善合金电极电化学反应的动力学性能,但不同退火时间对合金电极的高倍率放电性能影响不明显.  相似文献   
90.
首次合成了一种不对称联苯和芳香酯型液晶环氧树脂4"-环氧丙氧基苯甲酸-4-环氧丙氧基联苯-4'-酯(EBEPC),利用FT-IR、1H NMR、DSC和POM对其结构和性能进行了表征.结果表明,EBEPC在190℃时可形成明显的向列相液晶.对其同普通固化剂DDM体系的固化反应过程、固化动力学进行了研究,与普通环氧树脂E-51/DDM体系比较,液晶环氧树脂EBEPC体系具有较低的固化反应温度,且表观话化能Ea(54.5kJ/mol)较E-51/DDM体系(60.7kJ/mol)低,EBEPC体系具有更高的反应活性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号