首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3626篇
  免费   1037篇
  国内免费   19篇
地球科学   4682篇
  2023年   2篇
  2021年   37篇
  2020年   62篇
  2019年   201篇
  2018年   204篇
  2017年   304篇
  2016年   349篇
  2015年   354篇
  2014年   388篇
  2013年   441篇
  2012年   306篇
  2011年   293篇
  2010年   274篇
  2009年   184篇
  2008年   232篇
  2007年   163篇
  2006年   128篇
  2005年   117篇
  2004年   111篇
  2003年   123篇
  2002年   102篇
  2001年   92篇
  2000年   94篇
  1999年   25篇
  1998年   6篇
  1997年   6篇
  1996年   2篇
  1995年   5篇
  1994年   7篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   7篇
  1984年   10篇
  1983年   4篇
  1982年   2篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1965年   1篇
排序方式: 共有4682条查询结果,搜索用时 0 毫秒
991.
Abstract

In this study, a 5‐day life‐cycle of the IOP‐14 storm during CASP II is examined using conventional observations and numerical simulations with a mesoscale version of the Canadian Regional Finite‐Element (RFE) model. Observational analysis reveals that the IOP‐14 storm forms from a lee trough, occurring along a strong baroclinic zone with an intense frontogenetic deformation, that interacts with an upper‐level travelling short‐wave trough across the Canadian Rockies. Then the storm experiences a slow, but nearly steady, growth while traversing the North American continent. It deepens explosively as it moves into the Atlantic Ocean. It appears that i) the enhanced large‐scale baroclinicity due to land‐sea temperature contrasts, ii) the tremendous latent heat release due to the transport of high‐θe air from the marine boundary layer, Hi) the decrease of surface drag and iv) the favourable westward tilt of the low with an amplifying trough all contribute to the explosive deepening of the storm.

Two consecutive simulations covering a total of 102 h during the storm development are carried out with a grid size of 50 km. The RFE model reproduces very well the formation of the surface low on the lee side of the Rockies, the track and deepening rates, the explosive development and decay of the storm, and various mesoscale phenomena (e.g., a “bent‐back” warm front, a “T‐bone” thermal pattern, a cold frontal “fracture”, an upper‐level “eye” and warm‐core structures), as verified by conventional observations, satellite imagery, flight‐level and dropsonde data from a research aircraft. It is found from potential vorticity (PV) analysis that the storm reaches its peak intensity as the upper‐level dry PV anomaly, the low‐level moist PV anomaly and surface thermal warmth are vertically superposed. PV inversions reveal that these anomalies contribute about 60%, 30% and 10%, respectively, to the 900‐hPa negative height perturbation. It is shown that the warm‐core structure near the cyclone centre is produced by advection of warmer air ahead of the cold front, rather than by adiabatic warming associated with subsidence.  相似文献   
992.
This article analyses lay understandings of climate change elicited through a longitudinal population-based survey of climate change, place and community among 1162 residents in the Hunter Valley, Southeast Australia. We explore how older residents in contrasting rural and coastal geographic areas perceive climate change information in terms of culturally relevant meanings and values, lived experiences and emotional responses to seasonal cycles, temperature fluctuations and altered landscapes. Thematic analysis of comments given by 467 interviewees to an open-ended question identified a significant subset for whom the concepts of “nature” and “science” express competing views about changing climatic conditions. For them, the idea of “natural cycles” is a significant cultural construct that links nature and humans through time in a way that structures stable and resilient understandings of environmental change, drawing on established cosmological frameworks for contemplating the future in relation to the past. In contrast to other studies that postulate scepticism and denial as individuals’ fear management strategies in the face of climate change threat, we found that the natural cycles view is founded on a reassuring deeper conviction about how nature works, and is linked to other pro-environmental values not commonly found in sceptical groups. It is a paradox of natural cycles thinking that it rejects the anthropocentrism that is at the heart of science-based environmentalism. By contrast, it places humans as deeply integrated with nature, rather than operating outside it and attempting with uncertain science to control something that is ultimately uncontrollable.  相似文献   
993.
In this work, the multifractal properties of hourly rainfall data recorded at a location in Southern Spain have been related to the scale properties of the corresponding intensity–duration–frequency (IDF) curves. Four parametric models for the IDF curves have been fitted to the quantiles of rainfall obtained using the generalized Pareto frequency distribution function with the extreme data series obtained for the same place. The scaling of the rainfall intensity moments has been analysed, and the empirical moments scaling exponent function has been obtained. The corresponding values of q1 and γ1 have been empirical and theoretically calculated and compared with some characteristics of the different IDF models. Thus, the scaling behaviour of IDF curves has been analysed, and the best model has been selected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
994.
To bridge the gap between academic research and actual operation, we propose an intelligent control system for reservoir operation. The methodology includes two major processes, the knowledge acquired and implemented, and the inference system. In this study, a genetic algorithm (GA) and a fuzzy rule base (FRB) are used to extract knowledge based on the historical inflow data with a design objective function and on the operating rule curves respectively. The adaptive network‐based fuzzy inference system (ANFIS) is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. To investigate its applicability and practicability, the Shihmen reservoir, Taiwan, is used as a case study. For the purpose of comparison, a simulation of the currently used M‐5 operating rule curve is also performed. The results demonstrate that (1) the GA is an efficient way to search the optimal input–output patterns, (2) the FRB can extract the knowledge from the operating rule curves, and (3) the ANFIS models built on different types of knowledge can produce much better performance than the traditional M‐5 curves in real‐time reservoir operation. Moreover, we show that the model can be more intelligent for reservoir operation if more information (or knowledge) is involved. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
995.
A neural network with two hidden layers is developed to forecast typhoon rainfall. First, the model configuration is evaluated using eight typhoon characteristics. The forecasts for two typhoons based on only the typhoon characteristics are capable of showing the trend of rainfall when a typhoon is nearby. Furthermore, the influence of spatial rainfall information on rainfall forecasting is considered for improving the model design. A semivariogram is also applied to determine the required number of nearby rain gauges whose rainfall information will be used as input to the model. With the typhoon characteristics and the spatial rainfall information as input to the model, the forecasting model can produce reasonable forecasts. It is also found that too much spatial rainfall information cannot improve the generalization ability of the model, because the inclusion of irrelevant information adds noise to the network and undermines the performance of the network. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
996.
The present study proposes a method for evaluating the effectiveness of road‐crossing drainage culverts in ephemeral streams. This approach is focused on estimating the culvert capacity in road–stream crossings and the probable runoff generated on the road from hydrological thresholds associated with hydromorphological criteria. In particular, discharges at bankfull and flood‐prone stages have been used in combination with 2.5 and 100‐year peak discharges. Different hydraulic variables have been considered for calculating the discharge through culverts under these conditions (e.g. tailwater and headwater depth, inlet control, pipe roughness, pipe cross‐area and slope, pipe outlet velocity, critical water depth, and flow rate over the road). Geomorphological factors such as bed stability, bed load transport, and channel roughness have also been considered because of their potential for obstructing the drains in this type of channel. In addition, a potential obstruction index (PIOBSTR) has been calculated, as a dependent parameter of the obstacle index (IOBST) and the potential build‐up of coarse sediments (PBCS). The study has been carried out on the Mediterranean coast in the region of Murcia (Spain), where there are numerous examples of road–stream crossings equipped with culverts in ephemeral channels that could cause highly dangerous situations for road traffic. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
997.
Wells in aquifers of loose collapsible sediment are cased so that they have a blind wall and gain water only from the bottom. The hydraulic gradient established at the bottom of these wells during pumping brings the aquifer materials in a quicksand state, which may cause abrasion of pipes and pumps and even the destruction of well structure. To examine the quicksand occurrence, an analytical solution for the steady flow to a partially penetrating blind‐wall well in a confined aquifer is developed. The validity of the proposed solution is evaluated numerically. The sensitivity of maximum vertical gradient along the well bottom in response to aquifer and well parameters is examined. The solution is presented in the form of dimensionless‐type curves and equations that can be easily used to design the safe pumping rate and optimum well geometry to protect the well against sand production. The solution incorporates the anisotropy of aquifer materials and can also be used to determine the hydraulic conductivity of the aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
998.
999.
A geochemical study was carried out in a small spa area (Onyang Spa, Korea) where intensive pumping of deep thermal groundwater (1 300 000 m3 year−1) is taking place. This has caused the deep fractures to lose their artesian pressure and the upper shallow fractures have been encroached by shallow, cold waters. To quantify the influence of long‐term heavy pumping on the quality of the geothermal water, groundwater sampling and chemical analysis, water‐level measurement, and well loggings were performed for the selected deep thermal wells and shallow cold wells. Chemical analysis results indicate a big contrast in water chemistry and origins between the two water types. Shallow groundwater shows a wider concentration ranges in solutes that are closely related to human activity, illustrating the water's vulnerability to contamination near the land surface. Plots of water chemistry as a function of fluoride reveal that the quality of the thermal water was greatly influenced by the shallow, cold groundwater and that intensive pumping of the deep thermal groundwater has caused the introduction of shallow groundwater into the deeper fractures. Although the deep and the shallow fractures were piezometrically separated to some extent, a mixing model based on fluoride and nitrate indicated that the cold‐water fractions in the thermal wells are up to 50%. This suggests that the thermal water is faced with water quality degradation by the downward flow of the shallow, cold water. Restriction on the total of all the pumpage permits per unit area is suggested to restore the artesian pressure of the deep thermal aquifer and to prevent cold‐water intrusion in the study area. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
1000.
This study presents a novel hysteresis model based on van Genuchten's soil‐moisture relationships. The proposed model yields a series of closed‐form relationships in which two shape factors α and η are determined from the main drying and wetting curves. Experimental and literature‐cited data were used to assess model accuracy. The proposed model was also compared with the Scott and KP models. Analytical results indicate that the present model is simple, accurate and effective in constructing the series of wetting and drying scanning curves. Notably, the proposed model outperforms the Scott and KP models in terms of model accuracy. Moreover, the novel model eliminates the pumping effect and has perfect closure at scanning curve reversal points. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号