首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
地球科学   34篇
  2021年   6篇
  2020年   2篇
  2017年   1篇
  2014年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1992年   1篇
排序方式: 共有34条查询结果,搜索用时 0 毫秒
31.
32.
Using RXTE /PCA data, we study the fast variability of the reflected emission in the soft spectral state of Cyg X-1 by means of Fourier frequency-resolved spectroscopy. We find that the rms amplitude of variations of the reflected emission has the same frequency dependence as the primary radiation down to time-scales of ≲30–50 ms. This might indicate that the reflected flux reproduces, with nearly flat response, variations of the primary emission. Such behaviour differs notably from that of the hard spectral state, in which variations of the reflected flux are significantly suppressed in comparison with the primary emission, on time-scales shorter than ∼0.5–1 s.
If related to the finite light-crossing time of the reflector, these results suggest that the characteristic size of the reflector, presumably an optically thick accretion disc, in the hard spectral state is larger by a factor of ≳5–10 than in the soft spectral state. Modelling the transfer function of the disc, we estimate the inner radius of the accretion disc to be R in∼100 R g in the hard state and R in≲10 R g in the soft state for a 10-M black hole.  相似文献   
33.
We analyze in detail the ASCA observations of the hard X-ray source IGR J16318-4848, which was recently discovered by the INTEGRAL observatory (Courvoisier et al. 2003). The source has an anomalously hard spectrum in the energy range 0.5–10 keV and is virtually undetectable below 4 keV because of strong photoabsorption (n H L>4×1023 cm?2). The Kα line of neutral or weakly ionized iron with an equivalent width of ~2.5 keV dominates in the energy range 4–10 keV. There is also evidence for the presence of a second line at energy ~7 keV. Our analysis of archival observational data for the infrared counterpart of IGR J16318-4848 that was discovered by Foschini et al. (2003) revealed the source in the wavelength range 1–15 µm. Available data suggest that the object can be an X-ray binary system surrounded by a dense envelope. The source may be a high-mass X-ray binary similar to GX 301-2. We believe that IGR J16318-4848 can be the first representative of a hitherto unknown population of strongly absorbed Galactic X-ray sources that could not be detected by previous X-ray observatories.  相似文献   
34.
We study the origin of unresolved X-ray emission from the bulge of M31 based on archival Chandra and XMM–Newton observations. We demonstrate that three different components are present. (i) Broad-band emission from a large number of faint sources – mainly accreting white dwarfs and active binaries, associated with the old stellar population, similar to the Galactic ridge X-ray emission of the Milky Way. The X-ray to K -band luminosity ratios are compatible with those for the Milky Way and for M32; in the 2–10 keV band, the ratio is  (3.6 ± 0.2) × 1027 erg s−1 L−1  . (ii) Soft emission from ionized gas with a temperature of about ∼300 eV and a mass of  ∼2 × 106 M  . The gas distribution is significantly extended along the minor axis of the galaxy, suggesting that it may be outflowing in the direction perpendicular to the galactic disc. The mass and energy supply from evolved stars and Type Ia supernovae is sufficient to sustain the outflow. We also detect a shadow cast on the gas emission by spiral arms and the 10-kpc star-forming ring, confirming significant extent of the gas in the 'vertical' direction. (iii) Hard extended emission from spiral arms, most likely associated with young stellar objects and young stars located in the star-forming regions. The   L X/SFR  (star formation rate) ratio equals  ∼9 × 1038 (erg s−1)(M yr−1)−1  , which is about ∼1/3 of the high-mass X-ray binary contribution, determined earlier from Chandra observations of other nearby galaxies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号