首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1737篇
  免费   104篇
  国内免费   84篇
地球科学   1925篇
  2024年   5篇
  2023年   13篇
  2022年   57篇
  2021年   65篇
  2020年   68篇
  2019年   79篇
  2018年   155篇
  2017年   133篇
  2016年   179篇
  2015年   85篇
  2014年   186篇
  2013年   173篇
  2012年   94篇
  2011年   104篇
  2010年   65篇
  2009年   73篇
  2008年   57篇
  2007年   39篇
  2006年   54篇
  2005年   30篇
  2004年   23篇
  2003年   25篇
  2002年   23篇
  2001年   19篇
  2000年   16篇
  1999年   6篇
  1998年   13篇
  1997年   7篇
  1996年   3篇
  1995年   5篇
  1994年   7篇
  1993年   7篇
  1992年   8篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有1925条查询结果,搜索用时 15 毫秒
41.
We have calculated the opacity as resulting from different interstellar grain models, molecules, atoms, and ions. The resulting opacities have been applied to a numerical code used to follow the thermal evolution of a contracting cloud in one dimension. An exact analytical and computational developments of both Mie theory for isolated grains and Güttler's formulae for composite grain models have been used to calculate the extinction coefficients. We have studied two models of composite grain and three models of isolated grain. The opacity of interstellar grains has been calculated in the temperature range 10–1500 K. The molecular opacity is splitted into continuous and line opacities. The different sources of continuous opacity have been studied. The line opacity has also been included. The atomic opacities are also considered. The hydrodynamical equations are solved explicitly but the energy and Poisson equations are solved implicitly.It has been found that the thermal evolution during contraction of protostellar clouds is sensitive to both: the assumed grain models and the considered chemical composition. A cloud of an initial temperature of 10 K collapsed to a stage in which the temperature increases to 91 000 K and the density reached to 0.16 g cm–3.  相似文献   
42.
This paper presents the results of a numerical performance analysis to demonstrate the worthiness of a recently patented new concept propulsor, the so-called “thrust-balanced propeller (TBP)”. The main advantage of this unconventional propulsor is its inherent ability to reduce the unsteady effect of blade forces and moments when it is operating in a non-uniform wake flow. The propulsor comprises a pair of diametrically opposed blades that are connected to one another and mounted so as to be rotatable together through a limited angle about their spindle axis. A quasi-hydrodynamic approach is described and applied to perform the numerical analysis using a state-of-the-art lifting surface procedure for conventional propellers. Performance comparisons with a conventional fixed-pitch propeller are made for the blade forces and moments, efficiency, cavitation extents and fluctuating hull pressures. Bearing in mind the quasi-static nature of the analyses, the results present favourable performance characteristics for the thrust-balanced propeller and support the worthiness of the concept. However, the concept needs to be proved through physical model tests, which are planned to take in a cavitation tunnel.  相似文献   
43.
Baroclinic terms have been implemented in a three-dimensional fully hydrodynamic model developed by Badiei et al. [2008. A three-dimensional non-hydrostatic boundary fitted model for free surface flows. International Journal for Numerical Methods in Fluids, 56(6), 607-627] modifying its momentum equations to account for density gradients and utilizing the scalar (salinity, temperature, etc.) conservation equation (SCE) and a state equation for the calculation of density. In the solution of advection-diffusion terms of the governing Navier-Stokes equations (NSE) and SCE, a symmetric splitting method was applied to ensure the long-term stability of simulations. Correction terms proposed by Ruddic et al. (1995) were applied to SCE to ensure the conservation of the scalar quantity. In the presence of baroclinic terms, the zero gradient pressure in the vertical direction in the vicinity of surface and bottom boundaries assumed by Badiei et al. [2008. A three-dimensional non-hydrostatic boundary fitted model for free surface flows. International Journal for Numerical Methods in Fluids, 56(6), 607-627] created spurious currents. This problem was solved by assuming a hydrostatic pressure variation at those boundaries. The ability of extended model was validated by comparing its results with an experimental test case. The simulation of hydrodynamic and salt intrusion at Anzali Port located at the southern coasts of Caspian Sea in Iran was carried out by the model with both barotropic and baroclinic modes. The simulated results with baroclinic mode show a better agreement with measured data as compared to the results of barotropic mode that clearly demonstrate the significance of baroclinic terms in the simulation of cyclic intrusion of salt wedge into the Port Basin.  相似文献   
44.
Monthly mesoscale eddy kinetic energy (EKE) per unit mass has been computed for four years, 1993-1996, from TOPEX altimeter data in the Indian Ocean. It ranges from 50 cm2/s2 to 2,700 cm2/s2 (about 4,000 cm2/s2 near the Somali region in a few months). In the Arabian Sea and the Bay of Bengal, regions of high energies associated with various current systems under the influence of monsoonal winds have been delineated. Monthly variation of EKE near the Somali region has been studied. In this region the maximum EKE per unit mass has been observed during August every year, with variations in magnitude from year to year. The mesoscale eddy kinetic energy computed from TOPEX altimeter-derived SSH during 1993-1996 is highest near the Somali region during the SW monsoon, due to formation of mesoscale eddies and also because of upwelling. In the Bay of Bengal, high eddy kinetic energy is seen toward the western side during nonmonsoonal months due to the western boundary current. In the South Indian Ocean, it is high at a few places in some of the months. A large part of the Indian Ocean exhibits low eddy kinetic energy (less than 300 cm2/s2) year-round.  相似文献   
45.
Abstract. The production of the hymenosomatid crab Elamenopsis kempi was calculated for a period of 18 months from a subtidal area of the Garmat-Ali river, southern Iraq. The highest average individual somatic energy was attained in spring. Maximum population biomass and production were attained by the summer cohort and the minimum values were exhibited by the overwintering cohort. The fluctuations of the average population biomass were followed throughout the sampling period. Average total annual population production was 13.2 g DW · m-2· a-1 and the P/B ratio was 5.9. These values were compared with those of the most common crustaceans in the region.  相似文献   
46.
The saltation regime is very important for understanding the sediment transport mechanism. However,there is no consensus on a model for the saltation regime. This study answers several questions raised with respect to the Eulerian-Lagrangian modeling of sediment transport. The first question is why the previous saltation models that use different combinations of hydrodynamic forces yielded acceptable results? The second question is which shear lift model(i.e. a shear lift expression and its coefficient) is more appropriate? Another important question is which hydrodynamic forces have greater contributions to the saltation characteristics of a sediment particle? The last question is what are the contributions of the turbulence fluctuations as well as effects of using two-and three-dimensional(2 D and 3 D) models on the simulation results? In order to fairly answer these questions, a systematic study was done by considering different scenarios. The current study is the first attempt to clearly discuss these issues. A comprehensive 3 D saltation model for non-cohesive sediment was developed that includes all the hydrodynamic forces acting on the particle. The random nature of sediment transport was included using turbulent flow and bed-particle collision models. The eddy interaction model was applied to generate a3 D turbulent flow field. Bed-particle collisions were considered using the concept of a contact zone and a corresponding contact point. The validation of the model was done using the available experimental data for a wide range of sediment size(0.03 to 4.8 cm). For the first question, the results indicated that some of the hydrodynamic effects show opposing trends and some have negligible effects. With these opposing effects it is possible to adjust the coefficients of different models to achieve acceptable agreement with the same experimental data while omitting some aspects of the physics of the process. A suitable model for the shear lift force was developed by linking the lift coefficient to the drag coefficient and the contributions of the hydrodynamic forces and turbulence fluctuations as well as the consequences of using of 2 D and 3 D models were studied. The results indicate that the shear lift force and turbulent flow fluctuations are important factors for the saltation of both sand and gravel, and they cannot be ignored.  相似文献   
47.
Fragility functions are derived for low-rise code compliant & non-compliant special moment resisting frames (SMRFs). Non-compliant SMRFs those built in low strength concrete and lacking confining ties in joint panel zones, commonly found in developing countries. Shake table tests were performed on single-storey and two-storey 1:3 reduced scale representative frames to understand the damage mechanism and develop deformation-based damage scale. The non-compliant SMRF experienced column flexure cracking, longitudinal bar-slip in beam and observed with cover concrete spalling from the joint panels. The code compliant SMRF experienced flexure cracks in beam/column, and experienced joint cracking under extreme shaking. Numerical modeling technique is developed for inelastic modeling of reinforced concrete frame with beam bar-slip and joint damageability using SeismoStruct. Natural accelerograms were used to analyze the considered frames through incremental dynamic analyses in SeismoStruct. A probabilistic based approach was used to derive fragility functions for the considered frames. An example case study is presented for damageability evaluation of structures for earthquakes of various return periods (43, 72, 475, 2475 years).  相似文献   
48.
49.
ABSTRACT

The Integrated Water Flow Model (IWFM), developed by the California Department of Water Resources, is an integrated hydrological model that simulates key flow processes including groundwater flows, streamflow, stream–aquifer interactions, rainfall–runoff and infiltration. It also simulates the agricultural water demand as a function of soil, crop and climatic characteristics, as well as irrigation practices, and allows the user to meet these demands through pumping and stream diversions. This study investigates the modelling performance of the groundwater module of IWFM using several hypothetical test problems that cover a wide range of settings and boundary conditions, by comparing the simulation results with analytical solutions, field and laboratory observations, or with results from MODFLOW outputs. The comparisons demonstrate that IWFM is capable of simulating various hydrological processes reliably.
EDITOR M.C. Acreman; ASSOCIATE EDITOR A. Efstratiadis  相似文献   
50.
In this study, headspace single drop microextraction (HS‐SDME) method in combination with electrothermal atomic absorption spectrometry (ETAAS) method was developed and validated for the speciation and determination of inorganic mercury (iHg) and methylmercury (MeHg). MeHg and iHg species were reduced to volatile methylmercury hydride (CH3HgH) and elemental mercury, respectively, in the presence of NaBH4 and trapped onto a drop of acceptor phase in the tip of a microsyringe. Thiourea and ammonium pyrrolydinedithiocarbamate (APDC) were tested as the acceptor phase. The experimental parameters of the method such as microextraction time, temperature, NaBH4 concentration, acceptor phase concentration, and pH of the medium were investigated to obtain distinctive conditions for mercury species. Possible interference effects have also been investigated. In order to validation of the method, analytical figures of merits such as accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ), and linear working range have been evaluated. Accuracy of the method has been verified by analyzing certified reference materials (BCR 453 Tuna fish) and spiked samples. The proposed method was applied for the speciation and determination of mercury species in water and fish samples. Mercury species (MeHg and iHg) have been determined in the real samples with a relative error less than 10%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号