首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1207篇
  免费   66篇
  国内免费   2篇
工业技术   1275篇
  2024年   2篇
  2023年   22篇
  2022年   80篇
  2021年   90篇
  2020年   44篇
  2019年   43篇
  2018年   39篇
  2017年   40篇
  2016年   51篇
  2015年   45篇
  2014年   49篇
  2013年   79篇
  2012年   85篇
  2011年   98篇
  2010年   77篇
  2009年   69篇
  2008年   65篇
  2007年   55篇
  2006年   53篇
  2005年   23篇
  2004年   20篇
  2003年   19篇
  2002年   20篇
  2001年   11篇
  2000年   7篇
  1999年   6篇
  1998年   20篇
  1997年   8篇
  1996年   9篇
  1995年   5篇
  1994年   5篇
  1993年   8篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1966年   1篇
排序方式: 共有1275条查询结果,搜索用时 15 毫秒
31.
Molecular relaxation and polarization phenomena of twelve single-ion-conducting nanocomposite polymer electrolytes (nCPEs) are studied using Broadband Electrical Spectroscopy (BES). The electrolytes are obtained by combining PEG400 oligomers with increasing amounts of anionic nanofiller comprised of fluorinated-TiO2 associated with Li+ cations (LiFT®), resulting in [PEG400/(LiFT)y] systems with 0 ≤ y ≤ 26.4. This new class of [PEG400/(LiFT)y] electrolytes allows us to achieve a significant single-ion conductivity (1.1·10−5 S cm−1 at 30 °C for nLi/nO = 0.113) without the addition of lithium salts. To the best of our knowledge, this is the highest conductivity value reported for this class of electrolytes. This study, in conjunction with the results reported in Part 1, leads us to hypothesize a conduction mechanism in terms of two types of long-range charge-transfer processes. The first charge-transfer occurs at the interface between the filler nanoparticles and filler-PEG domains, while the second occurs through the PEG400 matrix with the assistance of polymer segmental motion. The measured Li+ transference numbers confirm that the studied materials are single-ion conductors.  相似文献   
32.
Reversible electropermeabilization of plant tissues with heterogeneous structure represents a technological challenge as the response of the different structures within the same specimen to the application of electric field may differ due to different cell sizes, extracellular space configurations, and electrical properties. The influence of five different pulsed electric field protocols with different pulse polarity, number of pulses (25, 50, 75, 100, 250, and 500), and intervals between pulses (no intervals and 1- and 2-ms intervals) on the reversible permeabilization of rucola (Eruca sativa) leaves was investigated. The electric field intensity was 600 V/cm. Electrical resistance of the bulk tissue was measured before and after electroporation, and propidium iodide was used to analyze the electroporation at the surface of the leaf. Leaf viability was assessed from survival in storage, and cell viability was investigated with fluorescein diacetate. Results indicate that the viability of the leaves could not be predicted by measurements of electrical resistance or permeabilization levels of the leaf surface. Higher survival rate was demonstrated when applying bipolar pulses compared with monopolar pulses, but the latter proved to be more effective than bipolar pulses for permeabilizing the surface of the leaves. Longer intervals between bipolar pulses resulted in increased viability preservation, while the number of electroporated cells on the leaf surface was comparable for all tested protocols.  相似文献   
33.
34.
Robot-assisted neurorehabilitation often involves networked systems of sensors (“sensory rooms”) and powerful devices in physical interaction with weak users. Safety is unquestionably a primary concern. Some lightweight robot platforms and devices designed on purpose include safety properties using redundant sensors or intrinsic safety design (e.g. compliance and backdrivability, limited exchange of energy). Nonetheless, the entire “sensory room” shall be required to be fail-safe and safely monitored as a system at large. Yet, sensor capabilities and control algorithms used in functional therapies require, in general, frequent updates or re-configurations, making a safety-grade release of such devices hardly sustainable in cost-effectiveness and development time. As such, promising integrated platforms for human-in-the-loop therapies could not find clinical application and manufacturing support because of lacking in the maintenance of global fail-safe properties.  相似文献   
35.
36.
Many real-world scheduling problems are solved to obtain optimal solutions in term of processing time, cost, and quality as optimization objectives. Currently, energy-efficiency is also taken into consideration in these problems. However, this problem is NP-hard, so many search techniques are not able to obtain a solution in a reasonable time. In this paper, a genetic algorithm is developed to solve an extended version of the Job-shop Scheduling Problem in which machines can consume different amounts of energy to process tasks at different rates (speed scaling). This problem represents an extension of the classical job-shop scheduling problem, where each operation has to be executed by one machine and this machine can work at different speeds. The evaluation section shows that a powerful commercial tool for solving scheduling problems was not able to solve large instances in a reasonable time, meanwhile our genetic algorithm was able to solve all instances with a good solution quality.  相似文献   
37.
38.
Defects of the peripheral nervous system are extremely frequent in trauma and surgeries and have high socioeconomic costs. If the direct suture of a lesion is not possible, i.e., nerve gap > 2 cm, it is necessary to use grafts. While the gold standard is the autograft, it has disadvantages related to its harvesting, with an inevitable functional deficit and further morbidity. An alternative to autografting is represented by the acellular nerve allograft (ANA), which avoids disadvantages of autograft harvesting and fresh allograft rejection. In this research, the authors intend to transfer to human nerves a novel technique, previously implemented in animal models, to decellularize nerves. The new method is based on soaking the nerve tissues in decellularizing solutions while associating ultrasounds and freeze–thaw cycles. It is performed without interrupting the sterility chain, so that the new graft may not require post-production γ-ray irradiation, which is suspected to affect the structural and functional quality of tissues. The new method is rapid, safe, and inexpensive if compared with available commercial ANAs. Histology and immunohistochemistry have been adopted to evaluate the new decellularized nerves. The study shows that the new method can be applied to human nerve samples, obtaining similar, and, sometimes better, results compared with the chosen control method, the Hudson technique.  相似文献   
39.
40.
In this work, chemical crosslinking with 1,4-butanediol diglycidyl ether (BDDGE) is used as strategy to enhance mechanical performance of fish gelatin (FG) gels in order to meet the properties' range of mammalian gelatin physical gels. Joint analysis of free amino groups, swelling ratio, and total soluble material indicates that crosslinking degree increases with increasing FG concentration and it is favored by a 0.2 BDDGE/FG ratio. Increasing crosslinking degree enhances gel indentation strength and shear modulus (μ) while decreases fracture toughness (GIC). Measured μ and GIC values lies within the range exhibited by mammalian gelatin physical gels, but the relationship between these parameters is opposite. This is due to the different fracture mechanisms occurring in chemically crosslinked and physical gels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号