首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   881篇
  免费   16篇
  国内免费   8篇
数理化   905篇
  2023年   6篇
  2022年   5篇
  2020年   18篇
  2019年   7篇
  2018年   5篇
  2017年   6篇
  2016年   11篇
  2015年   11篇
  2014年   12篇
  2013年   35篇
  2012年   43篇
  2011年   39篇
  2010年   17篇
  2009年   21篇
  2008年   26篇
  2007年   64篇
  2006年   71篇
  2005年   55篇
  2004年   41篇
  2003年   33篇
  2002年   34篇
  2001年   19篇
  2000年   31篇
  1998年   8篇
  1997年   8篇
  1996年   10篇
  1995年   11篇
  1994年   13篇
  1993年   17篇
  1992年   15篇
  1991年   6篇
  1990年   14篇
  1989年   6篇
  1988年   10篇
  1987年   7篇
  1986年   7篇
  1985年   10篇
  1984年   5篇
  1983年   4篇
  1982年   11篇
  1981年   9篇
  1980年   11篇
  1979年   11篇
  1978年   11篇
  1977年   4篇
  1976年   13篇
  1975年   11篇
  1974年   8篇
  1973年   11篇
  1972年   8篇
排序方式: 共有905条查询结果,搜索用时 15 毫秒
61.
We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.  相似文献   
62.
63.
Dimethylzinc reacts with an excess of N-2-pyridylaniline 6 to give the homoleptic species, Zn[PhN(2-C(5)H(4)N)](2) 8. Single crystal X-ray diffraction reveals a solid-state dimer based on an 8-membered (NCNZn)(2) core motif. Zn[CyN(2-C(5)H(4)N)]Me (Cy =c-C(6)H(11)) 10, prepared by the combination of ZnMe(2) with the corresponding cyclohexyl-substituted pyridylamine, is also dimeric in the solid state but reveals a central (ZnN)(2) metallacycle. Employment of (p-Tol)NH(2-C(5)H(4)N)(p-Tol = 4-MeC(6)H(4)) 11 yielded the tris(zinc) adduct Zn(3)[(p-Tol)N(2-C(5)H(4)N)](4)Me(2) 12, which incorporates a central chiral molecule of 'Zn[(p-Tol)N(2-C(5)H(4)N)](2)' 12a, that bridges two 'Zn[(p-Tol)N(2-C(5)H(4)N)]Me' 12b units. A similar trimetallic structure is noted when the pyridylaniline substrate 11 is replaced with the bicyclic guanidine 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine (hppH), affording Zn(3)(hpp)(4)Me(2) 13. Spectroscopic studies point to retention of the solid-state structure of in hydrocarbon solution. Reaction of 13 with dimesityl borinic acid, Mes(2)BOH (Mes = mesityl), affords Zn(3)(hpp)(4)(OBMes(2))(2) 14 in which the trimetallic core is retained. This reactivity is in contrast to the closely related reaction of dimeric Zn[Me(2)NC[N(i)Pr](2)]Me 15 with Mes(2)BOH, which yielded Zn[Me(2)NC[N(i)Pr](2)][OBMes(2)].Me(2)NC[N(i)Pr][NH(i)Pr] 16 as a result of protonation at the guanidine ligand in addition to the Zn-Me bond.  相似文献   
64.
Our struggles and ultimate success in achieving a total synthesis of phomactin A are described. Our strategy features an intramolecular oxa-[3 + 3] annulation to construct its unique ABD-tricyclic manifold. Although the synthesis would constitute a distinctly new approach with the 12-membered D-ring of phomactin A being assembled simultaneously with the 1-oxadecalin at an early stage, the ABD-tricycle represents a unique structural topology that would pose a number of unprecedented challenges. One challenge concerned elaborating this tricycle to have oxygenation at the proper carbon atoms. To overcome this, we would utilize a Kornblum-DeLaMare ring-opening of a peroxide bridge as well as a challenging late-stage 1,3-allylic alcohol transposition. Further, the structural intricacies of the ABD-tricycle were uncovered by a conformational analysis that would be critical for the C5a-homologation.  相似文献   
65.
First principles electronic structure calculations are typically performed in terms of molecular orbitals (or bands), providing a straightforward theoretical avenue for approximations of increasing sophistication, but do not usually provide any qualitative chemical information about the system. We can derive such information via post‐processing using natural bond orbital (NBO) analysis, which produces a chemical picture of bonding in terms of localized Lewis‐type bond and lone pair orbitals that we can use to understand molecular structure and interactions. We present NBO analysis of large‐scale calculations with the ONETEP linear‐scaling density functional theory package, which we have interfaced with the NBO 5 analysis program. In ONETEP calculations involving thousands of atoms, one is typically interested in particular regions of a nanosystem whilst accounting for long‐range electronic effects from the entire system. We show that by transforming the Non‐orthogonal Generalized Wannier Functions of ONETEP to natural atomic orbitals, NBO analysis can be performed within a localized region in such a way that ensures the results are identical to an analysis on the full system. We demonstrate the capabilities of this approach by performing illustrative studies of large proteins—namely, investigating changes in charge transfer between the heme group of myoglobin and its ligands with increasing system size and between a protein and its explicit solvent, estimating the contribution of electronic delocalization to the stabilization of hydrogen bonds in the binding pocket of a drug‐receptor complex, and observing, in situ, the n → π* hyperconjugative interactions between carbonyl groups that stabilize protein backbones. © 2012 Wiley Periodicals, Inc.  相似文献   
66.
Titanium-oxygen bonds derived from stable nitroxyl radicals are remarkably weak and can be homolyzed at 60 degrees C. The strength of these bonds depends sensitively on the ancillary ligation at titanium. Direct measurements of the rate of Ti-O bond homolysis in Ti-TEMPO complexes Cp2TiCl(TEMPO) (3) and Cp2TiCl(4-MeO-TEMPO) (4) (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-MeO-TEMPO = 2,2,6,6-tetramethyl-4-methoxypiperidine-N-oxyl) were conducted by nitroxyl radical exchange experiments. Eyring plots gave the activation parameters, deltaH++ = 27(+/- 1) kcal/mol, deltaS++ = 6.9(+/- 2.3) eu for 3 and deltaH++ = 28(+/- 1) kcal/mol, deltaS++ = 9.0(+/- 3.0) eu for 4, consistent with a process involving the homolysis of a weak Ti-O bond to generate the transient Cp2Ti(III)Cl and the nitroxyl radical. Thermolysis of the titanocene TEMPO complexes in the presence of epoxides leads to the Cp2Ti(III)Cl-mediated ring-opening of the epoxide followed by trapping by the nitroxyl radical. The X-ray crystal structure of the Ti-TEMPO derivative, Cp2TiCl(4-MeO-TEMPO) (4), is reported. DFT (B3LYP/6-31G*) calculations and experimental studies reveal that the strength of the Ti-O bond decreases dramatically with the number of cyclopentadienyl groups on titanium. The calculated Ti-O bond strength of the monocyclopentadienyl complex 2 is 43 kcal/mol, whereas that of the biscyclopentadienyl complex 3 is 17 kcal/mol, a difference of 26 kcal/mol. These studies reveal that the strength of these Ti-O bonds can be tuned over an interesting and experimentally accessible temperature range by appropriate ligation on titanium.  相似文献   
67.
68.
Organophosphorus compounds have played important roles as pesticides, chemical warfare agents and extractors of radioactive material. Structural elucidation of phosphonates poses a particular challenge because their initial forms can be hydrolyzed, thus, degradation products may predominate in samples acquired in the field. The analysis of non‐volatile organophosphorus compounds and their degradation products is possible using electrospray tandem mass spectrometry ESI‐MS/MS. Here, we present a generic strategy that allows the unambiguous identification of substituents for two families of organophosphorus compounds: the phosphonates and phosphates. General fragmentation rules were deduced based on the study of decomposition pathways of 55 organophosphorus esters, including examples found in the literature. Multistage MS (MSn) experiments at high resolution in a hybrid mass spectrometer provide accurate mass measurements, whereas collision‐induced dissociation experiments in a triple quadrupole give access to small fragment ions. The creation of a specific nomenclature for each possible structure of organophosphorus compound, depending on the alkyl side chain linked to the oxygen, was achieved by applying these fragmentation rules. This led to the creation of an ‘identification tree’ based upon the unique consecutive decomposition pathways uncovered for each individual compound. Hence, seven structural motifs were created that orient an unequivocal identification using the ‘identification tree’. Despite the similar structures of the ensemble of phosphate and phosphonate esters, distinct identifications based upon characteristic neutral losses and diagnostic fragment ions were possible in all cases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
69.
The effects of amine structure on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidates of adenosine are investigated. 4-Aminopyridine derivatives yielded oligoadenylates as long as dodecamers with a regioselectivity for 3',5'-phosphodiester bond formation averaging 88%. Linear and cyclic oligomers are obtained and no A5'ppA-containing products are detected. Oligomers as long as the hexanucleotide are obtained using 2-aminobenzimidazole as the activating group. A predominance of pA2'pA is detected in the dimer fraction along with cyclic 3',5'-trimer; no A5'ppA-containing oligomers were detected. Little or no oligomer formation was observed when morpholine, piperidine, pyrazole, 1,2,4-triazole, and 2-pyridone are used as phosphate-activating groups. The effects of the structure of the phosphate activating group on the oligomer structure and chain lengths are discussed.  相似文献   
70.
The existence of gas‐phase electrostatic ion–ion interactions between protonated sites on peptides ([Glu] Fibrinopeptide B, Angiotensin I and [Asn1, Val5]‐Angiotensin II) and attaching anions (ClO4? and HSO4?) derived from strong inorganic acids has been confirmed by CID MS/MS. Evidence for ion–ion interactions comes especially from the product ions formed during the first dissociation step, where, in addition to the expected loss of the anion or neutral acid, other product ions are also observed that require covalent bond cleavage (i.e. H2O loss when several carboxylate groups are present, or NH3 loss when only one carboxylate group is present). For [[Glu] Fibrinopeptide B + HSO4]?, under CID, H2O water loss was found to require less energy than H2SO4 departure. This indicates that the interaction between HSO4? and the peptide is stronger than the covalent bond holding the hydroxyl group, and must be an ion–ion interaction. The strength and stability of this type of ion‐pairing interaction are highly dependent on the accessibility of additional mobile charges to the site. Positive mobile charges such as protons from the peptide can be transferred to the attaching anion to possibly form a neutral that may depart from the complex. Alternatively, an ion–ion interaction can be disrupted by a competing proximal additional negatively charged site of the peptide that can potentially form a salt bridge with the positively charged site and thereby facilitate the attaching anion's departure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号