首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   13篇
  国内免费   1篇
工业技术   164篇
  2023年   3篇
  2022年   6篇
  2021年   11篇
  2020年   11篇
  2019年   22篇
  2018年   10篇
  2017年   10篇
  2016年   29篇
  2015年   10篇
  2014年   12篇
  2013年   17篇
  2012年   7篇
  2011年   7篇
  2010年   6篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
71.
In this paper, design and development of fault-tolerant control (FTC) is investigated for linear systems subject to loss of effectiveness and time-varying additive actuator faults as well as an external disturbance using the fault-hiding approach. The main aim of this approach is to keep the nominal controller and to design a virtual actuator that is inserted between the faulty plant and the nominal controller in order to hide actuator faults and disturbances from the nominal controller, and consequently the performance of the system before and after the occurrence of actuator faults is kept to be the same. The proposed adaptive virtual actuator does not require a separated fault detection, isolation and identification (FDII) unit and both state and output feedback cases are considered. An illustrative example is given to demonstrate the effectiveness of the proposed adaptive virtual actuator in both cases.  相似文献   
72.
Mechanics of Time-Dependent Materials - A significant number of materials show different mechanical behavior under dynamic loads compared to quasi-static (Salvado et al. in Prog. Mater....  相似文献   
73.
74.
Neural Computing and Applications - Uncertainty is one of the most important aspects of any decision-making process. One of the tools lately used in uncertain decision making is interval type-2...  相似文献   
75.

Natural disasters such as earthquakes impose destructive effects in the form of human injuries and damage to properties each year. Damage caused by the earthquake can disrupt traffic and highway systems, block vehicles and relief operations and make distribution operations difficult. Therefore, the repair of damaged roads in the least possible time so that distribution of relief can be done is a significant natural phenomenon after the disaster. In this study, a new mathematical integer nonlinear multi-objective, multi-period, multi-commodity model is suggested to locate the distribution centers, for timely distribution of vital relief to the damaged areas, vehicles routing and emergency roadway repair operations. It minimizes the travel time and total cost and increases reliability of the routes. To solve the designed problem, two meta-heuristic algorithms, namely non-dominated sorting genetic algorithm-II (NSGAII) and multi-objective particle swarm optimization (MOPSO), are offered. Then, the accuracy of mathematical models and efficiency of algorithms are assessed through numerical examples in detail.

  相似文献   
76.
In current study, possibility of Si-nanocage (Si48) and C-nanocage (C60) as anodes in LIB, NIB and KIB are examined via computational methods. Adsorption o  相似文献   
77.
In this study, the effects of ultrasound irradiation on transesterification process and characteristics of the synthesized biodiesel were investigated. The study was divided into two parts. In the first part, response surface methodology (RSM) and Central Composite Design (CCD) were employed to design experiments, develop the regression model, and evaluate individual and interactive impacts of five independent operational variables. The obtained results were then predicted by an optimized artificial neural network-genetic algorithm (ANN-GA) algorithm. The estimated results were compared with the experimental results. In the second part of the work, the impact of ultrasound irradiation on the main characteristics of the synthesized biodiesel was investigated. The analysis of the operating conditions indicated that reaction temperature and MeOH:oil molar ratio were the most important variables on reaction yield. The experimental results showed that there was a change in the main properties of the synthesized palm oil biodiesel with the density changed by about 0.3 kg/m3, viscosity by 0.12 mm2/s, pour/cloud point by 1–2°C, and flash point by 5°C, depending on different combinations of operational parameters. Besides, the numerical optimization technique was employed to optimize process variables in order to obtain the maximum FAME content (reaction yield) along with the best properties using both RSM and ANN-GA techniques. The maximum reaction yields of 95.2% and 95.1% were predicted by the RSM and ANN-GA models, respectively, at the optimum conditions. The conditions predicted by RSM and ANN-GA proved to be feasible for modeling and optimizing transesterfication yield with an accuracy of 99.18% and 99.14% and biodiesel properties of 98.61% and 98.28%, respectively.  相似文献   
78.
The multi-criteria group decision-making methods under fuzzy environments are developed to cope with imprecise and uncertain information for solving the complex group decision-making problems. A team of some professional experts for the assessment is established to judge candidates or alternatives among the chosen evaluation criteria. In this paper, a novel multi-criteria weighting and ranking model is introduced with interval-valued hesitant fuzzy setting, namely IVHF-MCWR, based on the group decision analysis. The interval-valued hesitant fuzzy set theory is a powerful tool to deal with uncertainty by considering some interval-values for an alternative under a set regarding assessment factors. In procedure of the proposed IVHF-MCWR model, weights of criteria as well as experts are considered to decrease the errors. In this regard, optimal criteria’ weights are computed by utilizing an extended maximizing deviation method based on IVHF-Hamming distance measure. In addition, experts’ judgments are taken into account for computing the criteria’ weights. Also, experts’ weights are determined based on proposed new IVHF technique for order performance by similarity to ideal solution method. Then, a new IVHF-index based on Hamming distance measure is introduced to compute the relative closeness coefficient for ranking the candidates or alternatives. Finally, two application examples about the location and supplier selection problems are considered to indicate the capability of the proposed IVHF-MCWR model. In addition, comparative analysis is reported to compare the proposed model and three fuzzy decision methods from the recent literature. Comparing these approaches and computational results shows that the IVHF-MCWR model works properly under uncertain conditions.  相似文献   
79.
Recent advances in materials, manufacturing, biotechnology, and microelectromechanical systems (MEMS) have fostered many exciting biosensors and bioactuators that are based on biocompatible piezoelectric materials. These biodevices can be safely integrated with biological systems for applications such as sensing biological forces, stimulating tissue growth and healing, as well as diagnosing medical problems. Herein, the principles, applications, future opportunities, and challenges of piezoelectric biomaterials for medical uses are reviewed thoroughly. Modern piezoelectric biosensors/bioactuators are developed with new materials and advanced methods in microfabrication/encapsulation to avoid the toxicity of conventional lead‐based piezoelectric materials. Intriguingly, some piezoelectric materials are biodegradable in nature, which eliminates the need for invasive implant extraction. Together, these advancements in the field of piezoelectric materials and microsystems can spark a new age in the field of medicine.  相似文献   
80.
This study is focused on the impact of oxygen plasma treatment on properties of carbon fibers and interfacial adhesion behavior between the carbon fibers and epoxy resin. The influences of the main parameters of plasma treatment process, including duration, power, and flow rate of oxygen gas were studied in detail using interlaminar shear strength (ILSS) of carbon fiber composites. The ILSS of composites made of carbon fibers treated by oxygen plasma for 1 min, at power of 125 W, and oxygen flow rate of 100 sccm presented a maximum increase of 28% compared to composites made of untreated carbon fibers. Furthermore, carbon fibers were characterized by scanning electron microscopy (SEM), tensile strength test, attenuated total reflectance Fourier transform infrared (ATR-FTIR), and Raman spectroscopy analyses. It was found that the concentration of reactive functional groups on the fiber surface was increased after the plasma modification, as well the surface roughness, which finally improved the interfacial adhesion between carbon fibers and epoxy resin. However, high power and long exposure times could partly damage the surface of carbon fibers and decrease the tensile strength of filaments and ILSS of treated fiber composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号