首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   14篇
  国内免费   2篇
医药卫生   157篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   10篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   12篇
  2011年   5篇
  2010年   3篇
  2009年   7篇
  2008年   4篇
  2007年   5篇
  2006年   8篇
  2005年   12篇
  2004年   7篇
  2003年   10篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1997年   1篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1982年   1篇
  1979年   1篇
排序方式: 共有157条查询结果,搜索用时 218 毫秒
91.
92.
93.
Liver cirrhosis is an elevating cause of morbidity and mortality worldwide. TNF-α/TNF-R1 signal is implicated in progression of many liver diseases. This study provides histological and ultrastructural view that clarifies the effect of etanercept, a TNF-α inhibitor, on development of thioacetamide (TAA)-induced liver cirrhosis and the accompanied hemosiderosis in rats, highlighting the implication and distribution pattern of hepatic TNF-R1. Sixty male albino rats (Rattus norvegicus) were equally randomized into three groups. Group I served as the control. Liver cirrhosis was triggered in the other two groups by intraperitoneal injection of TAA twice a week for five months. Group II received TAA only, while group III subcutaneously injected with etanercept one hour before TAA, along five months. At the end of the experiment, blood was collected for biochemical analysis and livers were excised for histological, immunohistochemical, and electron microscopical preparations. Rats treated with TAA only developed hepatic cirrhosis accompanied by massive deposition of hemosiderin; strong and widespread expression of hepatic TNF-R1 in sinusoidal endothelial cells (SECs), Kupffer cells (KCs), and many hepatocytes; and frequent appearance of fibrogenic, plasma, and mast cells, at the ultrastructural level. By contrast, administration of etanercept diminished the expression of TNF-R1, attenuated the accumulation of collagen and hemosiderin, and preserved the hepatic histoarchitecture. In conclusion, TNF-α signal via TNF-R1 may be implicated in the mechanism of fibrogenesis and the associated hemosiderosis. Etanercept may provide a promising therapeutic approach not only for attenuating the progression of fibrogenesis, but also for hepatic iron overload-associated disorders.  相似文献   
94.
Increasing evidence suggests an important role of alpha-synuclein (α-Syn) in the pathogenesis of Parkinson’s disease (PD). The inter-neuronal spread of α-Syn via exocytosis and endocytosis has been proposed as an explanation for the neuropathological findings of PD in sub-clinical and clinical phases. Therefore, interfering the uptake of α-Syn by neurons may be an important step in slowing or modifying the propagation of the disease. The purposes of our study were to investigate if the uptake of α-Syn fibrils can be specifically interfered with monomeric β-Amyloid1–40 (Aβ40) and to characterise the core acting site of interference. Using a radioisotope-labelled uptake assay, we found an 80 % uptake reduction of α-Syn fibrils in neurons interfered with monomeric Aβ40, but not β-Amyloid1–42 (Aβ42) as compared to controls. This finding was further confirmed by enzyme-linked immunosorbent assay (ELISA) with α-Syn uptake reduced from about 80 % (Aβ42) to about 20 % (Aβ40) relative to controls. To define the region of Aβ40 peptide capable of the interference, we explored shorter peptides with less amino acid residues from both the C-terminus and N-terminus. We found that the interference effect was preserved if amino acid residue was trimmed to position 11 (from N-terminus) and 36 (from C-terminus), but dropped off significantly if residues were trimmed beyond these positions. We therefore deduced that the “core acting site” lies between amino acid residue positions 12–36. These findings suggest α-Syn uptake can be interfered with monomeric Aβ40 and that the core acting site of interference might lie between amino acid residue positions 12–36.  相似文献   
95.
The kynurenine (KYN) pathway (KP) is a major degradative pathway of the amino acid, l-tryptophan (TRP), that ultimately leads to the anabolism of the essential pyridine nucleotide, nicotinamide adenine dinucleotide. TRP catabolism results in the production of several important metabolites, including the major immune tolerance-inducing metabolite KYN, and the neurotoxin and excitotoxin quinolinic acid. Dendritic cells (DCs) have been shown to mediate immunoregulatory roles that mediated by TRP catabolism. However, characterization of the KP in human DCs has so far only been partly delineated. It is critical to understand which KP enzymes are expressed and which KP metabolites are produced to be able to understand their regulatory effects on the immune response. In this study, we characterized the KP in human monocyte-derived DCs (MDDCs) in comparison with the human primary macrophages using RT-PCR, high-pressure gas chromatography, mass spectrometry, and immunocytochemistry. Our results show that the KP is entirely expressed in human MDDC. Following activation of the KP using interferon gamma, MDDCs can mediate apoptosis of T h cells in vitro. Understanding the molecular mechanisms regulating KP metabolism in MDDCs may provide renewed insight for the development of novel therapeutics aimed at modulating immunological effects and peripheral tolerance.  相似文献   
96.
Aims To describe, in the context of DSM‐V, how a focus on addiction and compulsion is emerging in the consideration of pathological gambling (PG). Methods A systematic literature review of evidence for the proposed re‐classification of PG as an addiction. Results Findings include: (i) phenomenological models of addiction highlighting a motivational shift from impulsivity to compulsivity associated with a protracted withdrawal syndrome and blurring of the ego‐syntonic/ego‐dystonic dichotomy; (ii) common neurotransmitter (dopamine, serotonin) contributions to PG and substance use disorders (SUDs); (iii) neuroimaging support for shared neurocircuitries between ‘behavioural’ and substance addictions and differences between obsessive–compulsive disorder (OCD), impulse control disorders (ICDs) and SUDs; (iv) genetic findings more closely related to endophenotypic constructs such as compulsivity and impulsivity than to psychiatric disorders; (v) psychological measures such as harm avoidance identifying a closer association between SUDs and PG than with OCD; (vi) community and pharmacotherapeutic trials data supporting a closer association between SUDs and PG than with OCD. Adapted behavioural therapies, such as exposure therapy, appear applicable to OCD, PG or SUDs, suggesting some commonalities across disorders. Conclusions PG shares more similarities with SUDs than with OCD. Similar to the investigation of impulsivity, studies of compulsivity hold promising insights concerning the course, differential diagnosis and treatment of PG, SUDs, and OCD.  相似文献   
97.
98.
99.
100.
Parkinson’s disease (PD) is a multicentred neurodegenerative disorder characterised by the accumulation and aggregation of alpha-synuclein (α-syn) in several parts of the central nervous system. However, it is well established that PD can generate symptoms of constipation and other gastrointestinal problems and α-syn containing lesions have been identified in intestinal nerve cells. In this study, we show that α-syn can be taken up and accumulate in primary human foetal enteric neurons from the gastrointestinal tract and can be transferred between foetal enteric neurons. Impaired proteosomal/lysosomal degradation can promote the uptake and accumulation of α-syn in enteric neurons. Enteric neurons exposed to α-syn can also lead to impaired mitochondrial complex I activity, reduced mitochondrial function, and NAD+ depletion culminating in cell death via energy restriction. These findings demonstrate neuron-to-neuron transmission of α-syn in enteric neurons, providing renewed evidence for Braak’s hypothesis and the aetiology of PD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号