首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   7篇
工业技术   117篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   6篇
  2019年   15篇
  2018年   7篇
  2017年   10篇
  2016年   3篇
  2015年   5篇
  2014年   7篇
  2013年   3篇
  2012年   4篇
  2011年   10篇
  2010年   6篇
  2009年   8篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1987年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有117条查询结果,搜索用时 0 毫秒
91.
Review of technologies for oil and gas produced water treatment   总被引:7,自引:0,他引:7  
Produced water is the largest waste stream generated in oil and gas industries. It is a mixture of different organic and inorganic compounds. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging produced water on the environment has lately become a significant issue of environmental concern. Produced water is conventionally treated through different physical, chemical, and biological methods. In offshore platforms because of space constraints, compact physical and chemical systems are used. However, current technologies cannot remove small-suspended oil particles and dissolved elements. Besides, many chemical treatments, whose initial and/or running cost are high and produce hazardous sludge. In onshore facilities, biological pretreatment of oily wastewater can be a cost-effective and environmental friendly method. As high salt concentration and variations of influent characteristics have direct influence on the turbidity of the effluent, it is appropriate to incorporate a physical treatment, e.g., membrane to refine the final effluent. For these reasons, major research efforts in the future could focus on the optimization of current technologies and use of combined physico-chemical and/or biological treatment of produced water in order to comply with reuse and discharge limits.  相似文献   
92.
Response surface methodology was used to optimize the performance of pervaporation of ethanol aqueous solution using polydimethylsiloxane hollow-fiber membrane. The effects of four operating conditions, that is, the feed temperature (30–50°C), the feed flow rate (10–50 L/h), ethanol concentration (5–20 wt%), and the vacuum pressure (10–50 KPa) on the membrane selectivity and the total flux of permeation were investigated with response surface methodology. The results showed that a quadratic model was suggested for both selectivity and total flux showing a high accuracy with R2 = 0.9999 and 0.9995, respectively. The developed models indicated a significant effect of the four studied factors on both selectivity and total flux with some significant interactions between these factors. The optimum selectivity was 15.56, achieved for a feed temperature of 30°C, feed flow rate of 10 L/h, ethanol concentration of 15 wt%, and a permeate pressure of 10.74 KPa whereas the optimum total flux was 1833.66 g/m2.h was observed for at a feed temperature of 50°C, a feed flow rate of 50 L/h, ethanol concentration of 15 wt%, and a permeate pressure of 49.38 KPa.  相似文献   
93.
Chitin is, after cellulose, the most abundant organic natural polysaccharide on Earth, being synthesized as a dominant component in the exoskeletons of crustaceans, among other sources. In the processing of seafood for human consumption, between 40 and 50% of the total raw material mass is wasted, causing a significant problem for the environment owing to its slow degradation. Efforts to find uses for chitin derivatives, particularly their oligomers, have intensified since these chemicals are highly functional and offer a wide range of applications, especially as antimicrobial agent. As a consequence, some adjunct treatments, either chemical or physical in nature, have been employed to assist acid and enzymatic hydrolysis. This work provides a detailed review of the methods employed to intensify the formation of chitin oligomers, particularly focusing on the adjunct treatments used (microwave, ultrasonication, steam explosion and gamma irradiation), and an evaluation of the yield and characteristics of the oligomers formed. Adjunct treatments are more suitable for enzymatic hydrolysis since these treatments modify the chitin structure, and enhance the hydrolysis rate and yield of the oligomers, under milder reaction conditions. For future research, it would be worth trying pre‐treatments like the application of high‐pressure to chitin in order to lower its crystallinity. © 2017 Society of Chemical Industry  相似文献   
94.
Recently, lard adulteration has highlighted the importance of checking raw materials and food products in order to assure their authenticity. Discriminant analysis (DA) using selected frequency regions (3,050?C2,800, 1,800?C1,600, and 1,500?C650 cm?1) was exploited for the classification of lard and other commercial vegetable oils and animal fats. As a result, the Cooman plot showed that all vegetable fats/oils and animal fats, including lard, are clustered in a distinct group. DA was also employed to assign real food samples, in particular biscuit, into one of two groups. In addition, DA is a very useful means for Halal screening technique in order to enhance the Halal authentication process.  相似文献   
95.
Bio based nitrogen doped carbon dots (N-CDs) were obtained from empty fruit bunch carboxymethylcellulose and ethylenediamine (EDA) through one-pot hydrothermal carbonization route. The optimum as-formed NCDs were thoroughly characterized via Transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS), UV-vis spectra (UV-Vis) and Fluorescence spectra (PL). Response surface methodology was statistically used to assess three independent variables that have major influence on the fluorescence quantum yield (QY), including temperature (230-270 ℃), time (2-6 h) and EDA mass (10%-23.3%). Based on analysis of variance (ANOVA) results, synthesis temperature was found to be the most influential factor on the QY, followed by time and EDA mass. Higher temperature, long synthesis time and high amount of EDA were satisfactorily enough for efficient carbonization conversion rate and obtaining highest QY of N-CDs. The obtained quadratic model (R2=0.9991) shows a good correlation between the experimental data and predicted values. The optimum synthetic parameters are of 270 ℃ temperature, 6 h reaction time and 23.3% of EDA mass. The optimized as-made N-CDs exhibited blue photoluminescence with both excitation dependent/independent phenomena and high nitrogen content. The maximum emission intensity was 426 nm at a maximum excitation wavelength of 320 nm, with a QY of up to 22.9%. XPS and FTIR data confirmed the existence of polar containing groups, such as carbonyl, carboxyl, hydroxyl and amino groups over the surface of N-CDs whereas nitrogen species in the form of (pyridinic and graphitic-N) were introduced in the aromatic carbon domains, which imparts the hydrophilic and photostability of N-CDs. Taking into account the low-cost and sustainable production of N-CDs, this method considered a feasible route for converting low quality waste into value-added nanomaterials and utilizing for different functionalization processes and analytical applications.  相似文献   
96.
97.
In this study, (1.1111 ? x)(0.9CS–0.1NaTf)? xAl2O3(0.02 ≤ x ≤ 0.1) [where CS is chitosan, NaTf is sodium triflate (NaCF3SO3), and Al2O3 is aluminum oxide] nanocomposite solid polymer electrolyte (SPE) films based on CS were prepared by a solution casting technique. X‐ray diffraction and scanning electron microscopy analysis revealed that the alumina nanoparticles had a great effect on the structural and morphological behavior of the CS–NaTf (90:10) polymer electrolyte. An investigation of the electrical and dielectric parameters of the nanocomposite SPE films was conducted. Electrical impedance spectroscopy was carried out for this purpose. The relationships between the electrical and dielectric parameters were used to interpret and understand the ion‐conduction mechanism. We observed that the direct‐current conductivity (σdc) and dielectric constant followed the same trend with salt concentration. σdc versus temperature showed the Arrhenius and Vogel‐Fulcher‐Tammann (VTF) regions. The drops of σdc at high temperatures were observed for all of the samples. The ion relaxation dynamics were studied from Argand plots. For the first time, we confirmed the existence of a strong experimental relationship between the high‐frequency semicircle of the impedance plots and the high‐frequency dispersion regions of the alternating‐current conductivity (σac). The dispersion regions of σac were used to study the ion‐conduction mechanism. The behavior of the frequency exponent as a function of the temperature was used to interpret σdc versus the temperature. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41774.  相似文献   
98.
The effects of multi-walled carbon nanotube (MWNT) concentration on the structural, optical and electrical properties of conjugated polymer-carbon nanotube composite are discussed. Multi-walled carbon nanotube-polypyrrole nanocomposites were synthesized by electrochemical polymerization of monomers in the presence of different amounts of MWNTs using sodium dodecylbenzensulfonate (SDBS) as surfactant at room temperature and normal pressure. Field emission scanning electron microscopy (FESEM) indicates that the polymer is wrapped around the nanotubes. Measurement of the nonlinear refractive indices (n(2)) and the nonlinear absorption (β) of the samples with different MWNT concentrations measurements were performed by a single Z-scan method using continuous wave (CW) laser beam excitation wavelength of λ = 532 nm. The results show that both nonlinear optical parameters increased with increasing the concentration of MWNTs. The third order nonlinear susceptibilities were also calculated and found to follow the same trend as n(2) and β. In addition, the conductivity of the composite film was found to increase rapidly with the increase in the MWNT concentration.  相似文献   
99.
Pressurised liquid extraction (PLE) of antioxidant compounds from bitter gourd fruits (Momordica charantia) in aqueous ethanolic solvent was investigated using response surface methodology at laboratory scale to understand key impact of extraction variables. Extraction efficiency was optimised by measuring the yield of extraction, total phenolic content (TPC), total flavonoid content (TFC), ferric reducing/antioxidant power assay (FRAP) and radical scavenging activity (RSA). The optimal extraction conditions were reached at 80% ethanol concentration, 10‐min extraction time and at 160 °C. Under these extraction conditions, values of TPC (5.40 ± 0.30 g GAE per 100 g), TFC (1.50 ± 0.10 g QE per 100 g), FRAP (778.55 ± 10 μmol eq Fe (II) g?1), yield (178.50 ± 5.50 mg g?1 dc) and RSA (75.50 ± 4.50%) were achieved. Furthermore, statistical analysis revealed that antioxidative attributes of bitter gourd extract were strongly and positively correlated with extraction temperature and ethanol concentration rather than processing time. This study illustrated that PLE has the potential to extract antioxidant compounds from tropical fruit vegetables in an accelerated manner. Furthermore, influential parameters affecting the process could be optimised for further industrial intake.  相似文献   
100.
Atherosclerosis is an impairment of the artery walls made up of two membrane layers, intima and media. Oxidative stress, hypertension, and hypercholesterolemia are the three main factors that cause atherosclerosis. These conditions are frequently found together and may cause atherogenesis to rapidly occur. The edible genus Pleurotus is commonly known as oyster mushrooms. Pleurotus spp. has been proven to have valuable medicinal attributes. Hence, they have been listed among “mushroom nutriceuticals” and categorized as both functional foods and medicinal mushrooms. In this review, we report the benefits of Pleurotus spp. for the prevention and treatment of atherosclerosis via reduction of oxidative stress, hypertension, and hypercholesterolemia in terms of the therapeutic compounds responsible. This review revealed that at least ten different types of Pleurotus spp. have been reported to have anti-atherogenic capabilities, with six of them possessing high levels of anti-atherogenic compounds such as ACE inhibitor peptide, ergothioneine, chrysin, and lovastatin. Hence, it has been demonstrated that Pleurotus spp. has great potential for use as food or extracts from fruiting bodies or mycelium in an alternative therapy for atherosclerosis, through prevention and treatment of oxidative stress, hypertension, and hypercholesterolemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号