首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3424篇
  免费   197篇
  国内免费   12篇
工业技术   3633篇
  2024年   2篇
  2023年   43篇
  2022年   36篇
  2021年   105篇
  2020年   52篇
  2019年   75篇
  2018年   90篇
  2017年   77篇
  2016年   106篇
  2015年   87篇
  2014年   129篇
  2013年   200篇
  2012年   242篇
  2011年   294篇
  2010年   209篇
  2009年   203篇
  2008年   216篇
  2007年   169篇
  2006年   164篇
  2005年   119篇
  2004年   125篇
  2003年   100篇
  2002年   123篇
  2001年   100篇
  2000年   68篇
  1999年   64篇
  1998年   127篇
  1997年   70篇
  1996年   50篇
  1995年   28篇
  1994年   31篇
  1993年   24篇
  1992年   25篇
  1991年   14篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1980年   2篇
  1979年   4篇
  1976年   2篇
  1972年   1篇
  1969年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有3633条查询结果,搜索用时 78 毫秒
991.
High mechanical properties of a tungsten carbide micro-end-mill tool was achieved by extending its tool life by electroplating nano-sized SiC particles (< 100 nm) that had a hardness similar to diamond in a nickel-based material. The co-electroplating method on the surface of the micro-end-mill tool was applied using SiC particles and Ni particles. Organic additives (saccharin and ammonium chloride) were added in a Watts bath to improve the nickel matrix density in the electroplating bath and to smooth the surface of the co-electroplating. The morphology of the coated nano-sized SiC particles and the composition were measured using Scanning Electron Microscope and Energy Dispersive Spectrometer. As the Ni/SiC co-electroplating layer was applied, the hardness and friction coefficient improved by 50%. Nano-sized SiC particles with 7 wt% were deposited on the surface of the micro-end mill while the Ni matrix was smoothed by adding organic additives. The tool life of the Ni/SiC co-electroplating coating on the micro-end mill was at least 25% longer than that of the existing micro-end mills without Ni/SiC co-electroplating. Thus, nano-sized SiC/Ni coating by electroplating significantly improves the mechanical properties of tungsten carbide micro-end mills.  相似文献   
992.
TiO2 layers were fabricated using a nano-particle deposition system (NPDS) on transparent conductive oxide (TCO) glass for dye sensitized solar cells (DSSCs). Conventionally, TiO2 paste for working electrodes has been fabricated using paste type methods. The fabricated paste composed of a mixture of nano-sized TiO2 powders, binders and solutions is then painted on TCO glass. After drying, the TiO2 layer on TCO glass is sintered to make a path for electron transfer. TiO2 layers formed by this paste type method require numerous steps, which can be time consuming. In this study, TiO2 powders were sprayed directly on TCO glass using NPDS in order to simplify the fabrication steps. To improve porosity and produce scattering layers, commercial nanocrystalline TiO, powders with different sizes were alternately deposited. Moreover, powders with different sizes were mixed and deposited on the TCO glass. The results indicate that the DSSCs with a TiO2 layer composed of different particle sizes had better cell performance than the cells assembled with single-sized TiO2 particles. Therefore, this study shows that a dry TiO2 coating process is possible for DSSC fabrication to improve its cell efficiencies, and this method can easily be applied on flexible substrates since NPDS is a room-temperature deposition process.  相似文献   
993.
DC electric fields are used to produce colloidal assemblies with orientational and layered positional order from a dilute suspension of spheroidal particles. These 3D assemblies, which can be visualized in situ by confocal microscopy, are achieved in short time spans (t < 1 h) by the application of a constant voltage across the capacitor-like device. This method yields denser and more ordered assemblies than had been previously reported with other assembly methods. Structures with a high degree of orientational order as well as layered positional order normal to the electrode surface are observed. These colloidal structures are explained as a consequence of electrophoretic deposition and field-assisted assembly. The interplay between the deposition rate and the rotational Brownian motion is found to be critical for the optimal ordering, which occurs when these rates, as quantified by the Peclet number, are of order one. The results suggest that the mechanism leading to ordering is equilibrium self-assembly but with kinetics dramatically accelerated by the application of the DC electric field. Finally, the crystalline symmetry of the densest structure formed is determined and compared with previously studied spheroidal assemblies.  相似文献   
994.
AIN/CrN multilayer hard coatings with various bilayer thicknesses were fabricated by a reactive sputtering process. The microstructural and mechanical characterizations of multilayer coatings were investigated through transmission electron microscope (TEM) observations and the hardness measurements by nano indentation. In particular, the variation of chemical bonding states of the bilayer nitrides was elucidated by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Many broken nitrogen bonds were formed by decreasing the bilayer thickness of AIN/CrN multilayer coatings. Existence of optimum AIN/CrN multilayer coatings thickness for maximum hardness could be explained by the competition of softening by the formation of broken nitrogen bonds and strengthening induced by decreasing bilayer thickness.  相似文献   
995.
Mesoporous TiO2 films modified via sol-gel necking were fabricated by dispersing Ti tetra-isopropoxide (TTIP; 8 to 16 wt% over TiO2) with TiO2 nanoparticles in isopropyl alcohol. The dye-sensitized solar cells (DSSCs) with 13 wt% TTIP-modified TiO2 film exhibited significantly improved overall energy conversion efficiency, despite having less adsorbed dye when compared with DSSCs with untreated and TiCl4 post-treated TiO2 films. The improvement can be attributed to the sol-gel necking (or interconnection) between the nanoparticles which leads to a much faster electron transport and a suppression of the recombination (or back electron transfer) between the TiO2 and electrolyte.  相似文献   
996.
997.
Pd-based nanoparticles, such as 40 wt.% carbon-supported Pd50Pt50, Pd75Pt25, Pd90Pt10 and Pd95Pt5, for anode electrocatalyst on polymer electrolyte membrane fuel cells (PEMFCs) were synthesized by the borohydride reduction method. PdPt metal particles with a narrow size distribution were dispersed uniformly on a carbon support. The membrane electrode assembly (MEA) with Pd95Pt5/C as the anode catalyst exhibited comparable single-cell performance to that of commercial Pt/C at 0.7 V. Although the Pt loading of the anode with Pd95Pt5/C was as low as 0.02 mg cm−2, the specific power (power to mass of Pt in the MEA) of Pd95Pt5/C was higher than that of Pt/C at 0.7 V. Furthermore, the single-cell performance with Pd50Pt50/C and Pd75Pt25/C as the anode catalyst at 0.4 V was approximately 95% that of the MEA with the Pt/C catalyst. This indicated that a Pd-based catalyst that has an extremely small amount of Pt (only 5 or 50 at.%) can be replaced as an anode electrocatalyst in PEMFC.  相似文献   
998.
A polymeric semiconductor, poly(3,6-dihexyl-[2,2']bi[thieno[3,2-b]thiophene]) (PDHTT), was synthesized and tested as an active layer in organic thin film transistors (OTFTs). This semiconductor showed considerable potential for use in commercial electronic devices because of its superior characteristics, particularly its good stability. PDHTT-based OTFTs exhibited high stability in air, retaining their initial performance after exposure to 70% relative humidity for 50 days; they were also stable under repeated electrical stress and even after exposure to temperatures as high as 250 °C. We attribute the remarkable stability of PDHTT OTFTs to the relatively low highest occupied molecular orbital (5.1 eV) level of the polymer and its highly interdigitated structure in the thin film state.  相似文献   
999.
A nanocomposite of CoO and a mesoporous carbon (CMK-3) has been studied as a cathode catalyst for lithium-oxygen batteries in alkyl carbonate electrolytes. The morphology and structure of the as-prepared nanocomposite were characterized by field emission scanning electron microscopy, transmission electron microscopy and high resolution transmission electron microscopy. The electrochemical properties of the mesoporous CoO/CMK-3 nanocomposite as a cathode catalyst in lithium-oxygen batteries were studied using galvanostatic charge-discharge methods. The reaction products on the cathode were analyzed by Fourier transform infrared spectroscopy. The CoO/CMK-3 nanocomposite exhibited better capacity retention than bare mesoporous CMK-3 carbon, Super-P carbon or CoO/Super-P nanocomposite. The synergistic effects arising from the combination of CoO nanoparticles and the mesoporous carbon nanoarchitecture may be responsible for the optimum catalytic performance in lithium-oxygen batteries.   相似文献   
1000.
A glucosyltransferase cDNA, RF5, was cloned from Oryza sativa using an RT-PCR strategy and expressed in Escherichia coli. Several flavonoids were tested for their ability to serve as substrates for RF5. RF5 effectively glucosylated kaempferol and quercetin to produce their 3-O-glucosides. Thus, RF5 could be defined as a flavonol 3-O-glucosyltransferase. E. coli cells expressing RF5 effectively converted 100 microM of kaempferol and quercetin into their corresponding glucosides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号