首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   33篇
  国内免费   2篇
工业技术   630篇
  2024年   1篇
  2023年   6篇
  2022年   16篇
  2021年   45篇
  2020年   25篇
  2019年   18篇
  2018年   41篇
  2017年   24篇
  2016年   18篇
  2015年   14篇
  2014年   33篇
  2013年   37篇
  2012年   21篇
  2011年   34篇
  2010年   29篇
  2009年   33篇
  2008年   29篇
  2007年   22篇
  2006年   18篇
  2005年   16篇
  2004年   17篇
  2003年   10篇
  2002年   12篇
  2001年   10篇
  2000年   7篇
  1999年   8篇
  1998年   10篇
  1997年   5篇
  1996年   7篇
  1994年   7篇
  1993年   7篇
  1992年   7篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   3篇
  1974年   1篇
  1967年   1篇
排序方式: 共有630条查询结果,搜索用时 453 毫秒
71.
A new double-open-cubane core Cd(II)-O-Cu(II) bimetallic ligand mixed cluster of type [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN was made available in EtOH/CH3CN solution. The 1-hydroxymethyl-3,5-dimethylpyrazole (NNOH) and 3,5-dimethylpyrazole (NNH) act as N,O-polydentate anion ligands in coordinating the Cu(II) and Cd(II) centers. The structure of the cluster in the solid state was proved by XRD study and confirmed in the liquid state by UV-vis analysis. The XRD result supported the construction of two octahedral and one square pyramid geometries types around the four Cu(II) centers and only octahedral geometry around Cd(II) two centers. Interestingly, NNOH ligand acts as a tetra-µ3-oxo and tri-µ2-oxo ligand; meanwhile, the N-N in NNH acts as classical bidentate anion/neutral ligands. The interactions in the lattice were detected experimentally by the XRD-packing result and computed via Hirschfeld surface analysis (HSA). The UV-vis., FT-IR and Energy Dispersive X-ray (EDX), supported the desired double-open cubane cluster composition. The oxidation potential of the desired cluster was evaluated using a 3,5-DTB-catechol 3,5-DTB-quinone as a catecholase model reaction.  相似文献   
72.
The photocatalytic hydrogen generation is a novel, eco-friendly and favourable method for production of green and clean energy using light energy. In this direction, we report low-temperature ionothermal method for the preparation of TiO2 nanoparticles (NPs) using methoxy ethyl methyl imidazolium tris (pentafluoroethyl) trifluoro phosphate (MOEMINtf2) as an ionic liquid (IL) at 120°C for 1 day. The synthesized nanomaterials were examined using different spectrochemical methods like UV-DRS, XRD, FT-IR, TEM, BET and TGA-DTA techniques. The mixed phase TiO2 is obtained with 81.7% of anatase and 18.3% of rutile phase by the XRD studies, and average crystallite size is found to be ∼7 nm. The stretching of Ti-O bond (∼555 cm−1) and few other bands related to ionic liquid were confirmed by FTIR spectrum. The band gap energy was observed to be ∼3.38 eV by UV-DRS analysis. TEM images reveal spherical shape with an average particles size of about 10 nm. Photocatalytic H2 generation was carried out using TiO2 NPs and observed the generation of 553 μmol h−1 g−1 via water splitting reaction. Furthermore, the prepared TiO2 NPs employed for the photocatalytic degradation of methylene blue dye (84.54%), and photoluminescence studies confirms the obtained material can be used in optoelectronic applications with green emission.  相似文献   
73.
74.
The current article aims at investigating the effect of a periodic tangential magnetic field on the stability of a horizontal flat sheet. The media were considered porous, the three viscous‐fluid layers were initially streaming with uniform velocities, and the magnetic field admitted the presence of free‐surface currents. Furthermore, the transfer of mass and heat phenomenon was taken into account. The analysis, in this paper, was followed by the viscous potential theory. Moreover, the stability of the boundary‐value problem resulted in coupled second‐order linear differential equations with damping and complex coefficients. In regard to the uniform and periodic magnetic field, the standard normal mode approach was applied to deduce a general dispersion relation and judge the stability criteria. In addition, several unfamiliar cases were reported, according to appropriate data choices. The stability conditions were theoretically analyzed, and the influences of the various parameters in the stability profile were identified through a set of diagrams. In accordance wth the oscillating field, the coupled dispersion equations were combined to give the established Mathieu equation. Therefore, the governed transition curves were, theoretically, obtained. Finally, the results were numerically confirmed.  相似文献   
75.
It is important for a feature-based system to preserve feature integrity during feature operation, especially when feature interaction occurs. The paper presents a feature conversion approach to convert design features used in a design model into machining features for the downstream applications. This process includes both form features (geometric information) and non-geometric features conversion. Most researchers have concentrated on geometric information extraction and conversion without tackling the important problem of non-geometric feature information. This paper focuses on the extraction and conversion of feature geometric dimensions and tolerances (GD&T) for downstream machining application.The main barrier to the integration of a feature-based CAD/CAPP/CAM system – feature interaction – is discussed in this paper, which alters design features in their geometries and non-geometric information. How to identify and validate these feature dimensions and tolerances is one of the key issues in feature interaction conversion. The development of robust methodologies for preserving feature integrity for use in process planning application is the main thrust of the work reported in this paper.  相似文献   
76.
Opportunistic networking enables users to communicate in an environment where connectivity is intermittent or unstable. However, such networking scheme assumes that mobile nodes voluntary cooperate, which cannot be guaranteed. Some nodes can simply exhibit selfish behavior and thus diminish the effectiveness of the approach. In this paper, a game scenario is formulated in which the nodes try to convince each other to participate in packets forwarding. Each node is considered as a player in this game. When a node comes in the communication range of another, a bargaining game starts between them as part of the message forwarding process. Both players try to have a mutual agreement on a price for message forwarding. We present a new incentive mechanism called evolutionary bargaining‐based incentive scheme (EBIS) to motivate selfish nodes to cooperate in data forwarding. In EBIS, a node negotiates with other nodes to obtain an agreeable amount of credit for its forwarding service. Nodes apply a sequential bargaining game and then adapt their strategies using an evolutionary model to maximize the probability of reaching an agreement. Unlike classical bargaining games, nodes in our model are boundedly rational. In addition, we use the evolutionary stable strategy (ESS) concept to determine the adaptive strategies for the nodes. The comparison of EBIS with a benchmarked model demonstrates that EBIS performs better in terms of packet delivery ratio and average latency.  相似文献   
77.
Wireless sensor network (WSN) technologies have enabled ubiquitous sensing to intersect many areas of modern day living. The creation of these devices offers the ability to get, gather, exchange, and consume environmental measurement from the physical world in a communicating‐actuating network, called the Internet of Things (IoT). As the number of physical world objects from heterogeneous network environments grows, the data produced by these objects raise uncontrollably, bringing a delicate challenge into scalability management in the IoT networks. Cloud computing is a much more mature technology, offering unlimited virtual capabilities in terms of storage capacity and processing power. Ostensibly, it seems that cloud computing and IoT are evolving independently on their own paths, but in reality, the integration of clouds with IoT will lead to deal with the inability to scale automatically depending on the overload caused by the drastic growth of the number of connected devices and/or by the huge amount of exchanged data in the IoT networks. In this paper, our objective is to promote the scalability management, using hybrid mechanism that will combine traffic‐oriented mechanism and resources‐oriented mechanism, with adaption actions. By the use of autonomic middleware within IoT systems, we seek to improve the monitoring components's architectural design, based on cloud computing‐oriented scalability solution. The intention is to maximize the number of satisfied requests, while maintaining at an acceptable QoS level of the system performances (RTT of the system, RAM, and CPU of the middleware). In order to evaluate our solution performance, we have performed different scenarios testbed experiments. Generally, our proposed results are better than those mentioned as reference.  相似文献   
78.
ZnO nanopowders of tailored particle sizes were synthesized using a simple wet chemical method, by controlling the mass ratio of the precursors. The physical properties were investigated as a function of OH?/Zn2+ mass ratio (x). The structural properties of the synthesized nanoparticles (NPs) are studied using X-ray diffraction (XRD). XRD patterns show pure wurtzite structure. Microstructural parameters dependence on x ratio was studied based on Williamson-Hall model. We notice an increase in crystallite size (17–24?nm) and a decrease in strain values when the x ratio increases (0.5–1.4). The best crystallinity corresponds to the higher mass ratio. Indeed, for x?=?1.4 we obtain the largest crystallite size, the lowest strain and stacking faults. The TEM images support the XRD results. Raman spectra confirm the purity of the synthesized ZnO powder. Furthermore, the optical properties were examined by UV–vis and Photoluminescence as a function of precursor’s ratio. Absorption data show a band gap red-shift of the ZnO-NPs with increase in particle’s size. Moreover, we found that the ZnO-NPs luminescence in the visible range can be engineered by changes of x ratio. This constitutes an advantage for the use of ZnO-NPs in different wavelength areas in optoelectronic applications covering UV-Blue-Green domain for the LED design, sensors…  相似文献   
79.
In this article, we develop a dynamic version of the variational multiscale (D‐VMS) stabilization for nearly/fully incompressible solid dynamics simulations of viscoelastic materials. The constitutive models considered here are based on Prony series expansions, which are rather common in the practice of finite element simulations, especially in industrial/commercial applications. Our method is based on a mixed formulation, in which the momentum equation is complemented by a pressure equation in rate form. The unknown pressure, displacement, and velocity are approximated with piecewise linear, continuous finite element functions. To prevent spurious oscillations, the pressure equation is augmented with a stabilization operator specifically designed for viscoelastic problems, in that it depends on the viscoelastic dissipation. We demonstrate the robustness, stability, and accuracy properties of the proposed method with extensive numerical tests in the case of linear and finite deformations.  相似文献   
80.
Reliable, controlled doping of 2D transition metal dichalcogenides will enable the realization of next-generation electronic, logic-memory, and magnetic devices based on these materials. However, to date, accurate control over dopant concentration and scalability of the process remains a challenge. Here, a systematic study of scalable in situ doping of fully coalesced 2D WSe2 films with Re atoms via metal–organic chemical vapor deposition is reported. Dopant concentrations are uniformly distributed over the substrate surface, with precisely controlled concentrations down to <0.001% Re achieved by tuning the precursor partial pressure. Moreover, the impact of doping on morphological, chemical, optical, and electronic properties of WSe2 is elucidated with detailed experimental and theoretical examinations, confirming that the substitutional doping of Re at the W site leads to n-type behavior of WSe2. Transport characteristics of fabricated back-gated field-effect-transistors are directly correlated to the dopant concentration, with degrading device performances for doping concentrations exceeding 1% of Re. The study demonstrates a viable approach to introducing true dopant-level impurities with high precision, which can be scaled up to batch production for applications beyond digital electronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号