首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2366篇
  免费   98篇
  国内免费   15篇
工业技术   2479篇
  2024年   10篇
  2023年   43篇
  2022年   86篇
  2021年   104篇
  2020年   98篇
  2019年   97篇
  2018年   129篇
  2017年   125篇
  2016年   111篇
  2015年   75篇
  2014年   88篇
  2013年   222篇
  2012年   149篇
  2011年   151篇
  2010年   111篇
  2009年   144篇
  2008年   153篇
  2007年   109篇
  2006年   79篇
  2005年   60篇
  2004年   43篇
  2003年   41篇
  2002年   24篇
  2001年   15篇
  2000年   18篇
  1999年   14篇
  1998年   28篇
  1997年   16篇
  1996年   8篇
  1995年   5篇
  1994年   7篇
  1993年   12篇
  1992年   14篇
  1991年   11篇
  1990年   8篇
  1989年   6篇
  1988年   4篇
  1987年   7篇
  1986年   10篇
  1985年   7篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1981年   6篇
  1979年   3篇
  1976年   3篇
  1971年   1篇
  1970年   3篇
  1968年   1篇
  1967年   3篇
排序方式: 共有2479条查询结果,搜索用时 15 毫秒
81.
82.
83.
84.
85.
86.
87.
88.
In the present study, the air turbulator, which is a part of a nonpremixed burner, is investigated numerically in terms of its effects on the diffusion methane flame structure and NOX emissions. A computational fluid dynamics (CFD) code was used for the numerical analysis. At first, four experiments were conducted using natural gas fuel. In the experimental studies, the excess air ratio was taken constant as 1.2, while the fuel consumption rate was changed between 22 and 51 Nm3/h. After the experimental studies, the CFD studies were carried out. Pure methane was taken as fuel for the simulations. The nonpremixed combustion model with the steady laminar flamelet model (SFM) approach was used in the combustion analyses. Methane‐air extinction mechanism with 17 species and 58 reactions was used for the simulations. The results obtained from the CFD studies were confronted with the measurements of the flue gas emissions in the experimental studies. Then, a modified burner head was analysed numerically for the different air turbulator blade numbers and angles. The CFD results show that increasing the air turbulator blade number and angle causes the thermal NO emissions to be reduced in the flue gas by making the flame in the combustion chamber more uniform than the original case. This new flame structure provides better mixing of the fuel and combustion air. Thus, the diffusion flame structure in the combustion chamber takes the form of the partially premixed flame structure. The maximum reduction in the thermal NO emissions in the flue gas is achieved at 38% according to the original case.  相似文献   
89.
The heat transfer density rate from a row of rhombic tubes cooled by forced convection is maximized based on constructal design. A row of parallel rhombic tubes are placed in a fixed volume, the horizontal axis of the tubes is kept constant while the vertical axis of the tubes and the spacing between the tubes are changed to facilitate the heat flow from the tubes to the coolant. The tubes are kept at constant temperature and the incoming free‐stream flow is induced by constant pressure drop. For steady, two‐dimensional, incompressible, and laminar forced convection, the governing equations are solved numerically by finite volume method with SIMPLE algorithm. The dimensionless pressure drop (Bejan number, Be) ranging from 10 3 to 10 5, the range of the vertical axis of the tube is 0.2 ≤ B ≤ 2, and the working fluid is air ( Pr = 0.71). The results show that the optimal spacing decreases and the maximum heat transfer density increases as the Bejan number increases for all vertical axes of the tube. Bejan number and the bluntness of the tube have a significant effect of the flow structure (separation and vortex formation) around the tubes at the optimal spacings.  相似文献   
90.
The density of heat transfer rate from a vertical array of flat tubes in cross flow is maximized under fixed pressure drop using constructal design. With the constructal design, the tube arrangement is found such that the heat currents from the tubes to the coolant flow easily. The constraint in the present constructal design is the volume where the tubes are arranged inside it. The two degrees of freedom available inside the volume are the tube‐to‐tube spacing and the length of the flat part of the tubes (tube flatness). The tubes are heated with constant surface temperature. The equations of continuity, momentums, and energy for steady, two‐dimensional, and laminar forced convection are solved by means of a finite‐volume method. The ranges of the present study are Bejan number (dimensionless pressure drop) (103Be ≤ 105) and tube flatness (dimensionless length of the tube flat part) (0 ≤ F ≤ 0.8). The coolant used is air with Prandtl number (Pr = 0.72). The results reveal that the maximum heat transfer density decreases when the tube flatness decreases at constant Bejan number. At constant tube flatness, the heat transfer density increases as the dimensionless pressure drop (Bejan number) increases. Also, the optimal tube‐to‐tube spacing is constant, irrespective of the tube flatness at constant Bejan number.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号