首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93202篇
  免费   1635篇
  国内免费   500篇
工业技术   95337篇
  2024年   57篇
  2023年   294篇
  2022年   715篇
  2021年   1044篇
  2020年   685篇
  2019年   756篇
  2018年   14973篇
  2017年   13844篇
  2016年   10494篇
  2015年   993篇
  2014年   792篇
  2013年   1047篇
  2012年   3608篇
  2011年   9890篇
  2010年   8644篇
  2009年   5872篇
  2008年   6973篇
  2007年   7958篇
  2006年   268篇
  2005年   1318篇
  2004年   1224篇
  2003年   1259篇
  2002年   600篇
  2001年   142篇
  2000年   217篇
  1999年   104篇
  1998年   135篇
  1997年   94篇
  1996年   96篇
  1995年   76篇
  1994年   42篇
  1993年   52篇
  1992年   49篇
  1991年   54篇
  1987年   34篇
  1986年   31篇
  1984年   33篇
  1983年   28篇
  1968年   43篇
  1967年   34篇
  1966年   47篇
  1965年   46篇
  1963年   28篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   35篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
This paper presents an adaptive robust control method for trajectory tracking and path following of an omni-directional wheeled mobile platform with actuators’ uncertainties. The polar-space kinematic model of the platform with three independent driving omnidirectional wheels equally spaced at 120 from one another is briefly introduced, and the dynamic models of the three uncertain servomotors mounted on the driving wheels are also described. With the platform’s kinematic model and the motors’ dynamic model associated two unknown parameters, the adaptive robust controller is synthesized via the integral backstepping approach. Computer simulations and experimental results are conducted to show the effectiveness and merits of the proposed control method in comparison with a conventional PI feedback control method.  相似文献   
992.
Haptic devices allow a user to feel either reaction forces from virtual interactions or reaction forces reflected from a remote site during a bilateral teleoperation task. Also, guiding forces can be exerted to train the user in the performance of a virtual task or to assist him/her to safely teleoperate a robot. The generation of guiding forces relies on the existence of a motion plan that provides the direction to be followed to reach the goal from any free configuration of the configuration space (-space). This paper proposes a method to obtain such a plan that interleaves a sampling-based exploration of -space with an efficient computation of harmonic functions. A deterministic sampling sequence (with a bias based on harmonic function values) is used to obtain a hierarchical cell decomposition model of -space. A harmonic function is iteratively computed over the partially known model using a novel approach. The harmonic function is the navigation function used as motion plan. The approach has been implemented in a planner (called the Kautham planner) that, given an initial and a goal configuration, provides: (a) a channel of cells connecting the cell that contains the initial configuration with the cell that contains the goal configuration; (b) two harmonic functions over the whole -space, one that guides motions towards the channel and another that guides motions within the channel towards the goal; and (c) a path computed over a roadmap built with the free samples of the channel. The harmonic functions and the solution path are then used to generate the guiding forces for the haptic device. The planning approach is illustrated with examples on 2D and 3D workspaces. This work was partially supported by the CICYT projects DPI2005-00112 and DPI2007-63665.  相似文献   
993.
Delay composition in preemptive and non-preemptive real-time pipelines   总被引:1,自引:1,他引:0  
Uniprocessor schedulability theory made great strides, in part, due to the simplicity of composing the delay of a job from the execution times of higher-priority jobs that preempt it. In this paper, we bound the end-to-end delay of a job in a multistage pipeline as a function of job execution times on different stages under preemptive as well as non-preemptive scheduling. We show that the end-to-end delay is bounded by that of a single virtual “bottleneck” stage plus a small additive component. This contribution effectively transforms the pipeline into a single stage system. The wealth of schedulability analysis techniques derived for uniprocessors can then be applied to decide the schedulability of the pipeline. The transformation does not require imposing artificial per-stage deadlines, but rather models the pipeline as a whole and uses the end-to-end deadlines directly in the single-stage analysis. It also does not make assumptions on job arrival patterns or periodicity and thus can be applied to periodic and aperiodic tasks alike. We show through simulations that this approach outperforms previous pipeline schedulability tests except for very short pipelines or when deadlines are sufficiently large. The reason lies in the way we account for execution overlap among stages. We discuss how previous approaches account for overlap and point out interesting differences that lead to different performance advantages in different cases. Further, we also show that in certain cases non-preemptive scheduling can result in higher system utilization than preemptive scheduling in pipelined systems. We hope that the pipeline delay composition rule, derived in this paper, may be a step towards a general schedulability analysis foundation for large distributed systems.
Tarek AbdelzaherEmail:
  相似文献   
994.
Dynamic memory allocation has been used for decades. However, it has seldom been used in real-time systems since the worst case of spatial and temporal requirements for allocation and deallocation operations is either unbounded or bounded but with a very large bound. In this paper, a new allocator called TLSF (Two Level Segregated Fit) is presented. TLSF is designed and implemented to accommodate real-time constraints. The proposed allocator exhibits time-bounded behaviour, O(1), and maintains a very good execution time. This paper describes in detail the data structures and functions provided by TLSF. We also compare TLSF with a representative set of allocators regarding their temporal cost and fragmentation. Although the paper is mainly focused on timing analysis, a brief study and comparative analysis of fragmentation incurred by the allocators has been also included in order to provide a global view of the behaviour of the allocators. The temporal and spatial results showed that TLSF is also a fast allocator and produces a fragmentation close to that caused by the best existing allocators.
Alfons Crespo (Corresponding author)Email:
  相似文献   
995.
This research introduces a new optimality criterion for motion planning of wheeled mobile robots based on a cost index that assesses the nearness to singularity of forward and inverse kinematic models. Slip motions, infinite estimation error and impossible control actions are avoided escaping from singularities. In addition, high amplification of wheel velocity errors and high wheel velocity values are also avoided by moving far from the singularity. The proposed cost index can be used directly to complement path-planning and motion-planning techniques (e.g. tree graphs, roadmaps, etc.) in order to select the optimal collision-free path or trajectory among several possible solutions. To illustrate the applications of the proposed approach, an industrial forklift, equivalent to a tricycle-like mobile robot, is considered in a simulated environment. In particular, several results are validated for the proposed optimality criterion, which are extensively compared to those obtained with other classical optimality criteria, such as shortest-path, time-optimal and minimum-energy.  相似文献   
996.
This study presents a wavelet-based neuro-fuzzy network (WNFN). The proposed WNFN model combines the traditional Takagi–Sugeno–Kang (TSK) fuzzy model and the wavelet neural networks (WNN). This study adopts the non-orthogonal and compactly supported functions as wavelet neural network bases. A novel supervised evolutionary learning, called WNFN-S, is proposed to tune the adjustable parameters of the WNFN model. The proposed WNFN-S learning scheme is based on dynamic symbiotic evolution (DSE). The proposed DSE uses the sequential-search-based dynamic evolutionary (SSDE) method. In some real-world applications, exact training data may be expensive or even impossible to obtain. To solve this problem, the reinforcement evolutionary learning, called WNFN-R, is proposed. Computer simulations have been conducted to illustrate the performance and applicability of the proposed WNFN-S and WNFN-R learning algorithms.  相似文献   
997.
It is well understood and appreciated that Gödel’s Incompleteness Theorems apply to sufficiently strong, formal deductive systems. In particular, the theorems apply to systems which are adequate for conventional number theory. Less well known is that there exist algorithms which can be applied to such a system to generate a gödel-sentence for that system. Although the generation of a sentence is not equivalent to proving its truth, the present paper argues that the existence of these algorithms, when conjoined with Gödel’s results and accepted theorems of recursion theory, does provide the basis for an apparent paradox. The difficulty arises when such an algorithm is embedded within a computer program of sufficient arithmetic power. The required computer program (an AI system) is described herein, and the paradox is derived. A solution to the paradox is proposed, which, it is argued, illuminates the truth status of axioms in formal models of programs and Turing machines.  相似文献   
998.
Over the last two decades, artificial neural networks (ANN) have been applied to solve a variety of problems such as pattern classification and function approximation. In many applications, it is desirable to extract knowledge from trained neural networks for the users to gain a better understanding of the network’s solution. In this paper, we use a neural network rule extraction method to extract knowledge from 2222 dividend initiation and resumption events. We find that the positive relation between the short-term price reaction and the ratio of annualized dividend amount to stock price is primarily limited to 96 small firms with high dividend ratios. The results suggest that the degree of short-term stock price underreaction to dividend events may not be as dramatic as previously believed. The results also show that the relations between the stock price response and firm size is different across different types of firms. Thus, drawing the conclusions from the whole dividend event data may leave some important information unexamined. This study shows that neural network rule extraction method can reveal more knowledge from the data.  相似文献   
999.
This paper describes a multi-agent coordination mechanism applied to intersection simulation situations. In a goal of urban traffic simulation, we must consider the dynamic interactions between autonomous vehicles. The field of multi-agent systems provides us some studies for such systems, in particular on the coordination mechanisms. Conflicts between vehicles (i.e. agents) are very frequent in such applications, and they may cause deadlocks, particularly at intersections such as crossroads. Our approach is based on the solving of two player games/decision matrices which characterize three basic situations. An aggregation method generalizes to n-player games for complex crossroads. The objective of this approach consists in searching basic two-player matrices for solving n-agent problems. To explain the principle, we describe our approach for a particular case of crossroad with three agents. Finally, the obtained results have been examined via a tool of road traffic simulation, ARCHISIM. We assume also that the global traffic replicates the behavior of agents in different situations.  相似文献   
1000.
Action-reward learning is a reinforcement learning method. In this machine learning approach, an agent interacts with non-deterministic control domain. The agent selects actions at decision epochs and the control domain gives rise to rewards with which the performance measures of the actions are updated. The objective of the agent is to select the future best actions based on the updated performance measures. In this paper, we develop an asynchronous action-reward learning model which updates the performance measures of actions faster than conventional action-reward learning. This learning model is suitable to apply to nonstationary control domain where the rewards for actions vary over time. Based on the asynchronous action-reward learning, two situation reactive inventory control models (centralized and decentralized models) are proposed for a two-stage serial supply chain with nonstationary customer demand. A simulation based experiment was performed to evaluate the performance of the proposed two models. Chang Ouk Kim received his Ph.D. in industrial engineering from Purdue University in 1996 and his B.S. and M.S. degrees from Korea University, Republic of Korea in 1988 and 1990, respectively. From 1998--2001, he was an assistant professor in the Department of Industrial Systems Engineering at Myongji University, Republic of Korea. In 2002, he joined the Department of Information and Industrial Engineering at Yonsei University, Republic of Korea and is now an associate professor. He has published more than 30 articles at international journals. He is currently working on applications of artificial intelligence and adaptive control theory in supply chain management, RFID based logistics information system design, and advanced process control in semiconductor manufacturing. Ick-Hyun Kwon is a postdoctoral researcher in the Department of Civil and Environmental Engineering at University of Illinois at Urbana-Champaign. Previous to this position, Dr. Kwon was a research assistant professor in the Research Institute for Information and Communication Technology at Korea University, Seoul, Republic of Korea. He received his B.S., M.S., and Ph.D. degrees in Industrial Engineering from Korea University, in 1998, 2000, and 2006, respectively. His current research interests are supply chain management, inventory control, production planning and scheduling. Jun-Geol Baek is an assistant professor in the Department of Business Administration at Kwangwoon University, Seoul, Korea. He received his B.S., M.S., and Ph.D. degrees in Industrial Engineering from Korea University, Seoul, Korea, in 1993, 1995, and 2001 respectively. From March 2002 to February 2007, he was an assistant professor in the Department of Industrial Systems Engineering at Induk Institute of Technology, Seoul, Korea. His research interests include machine learning, data mining, intelligent machine diagnosis, and ubiquitous logistics information systems. An erratum to this article can be found at  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号