首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19615篇
  免费   1356篇
  国内免费   38篇
工业技术   21009篇
  2023年   158篇
  2022年   216篇
  2021年   614篇
  2020年   431篇
  2019年   481篇
  2018年   608篇
  2017年   588篇
  2016年   680篇
  2015年   596篇
  2014年   785篇
  2013年   1354篇
  2012年   1186篇
  2011年   1393篇
  2010年   1023篇
  2009年   959篇
  2008年   1015篇
  2007年   948篇
  2006年   765篇
  2005年   653篇
  2004年   513篇
  2003年   512篇
  2002年   462篇
  2001年   309篇
  2000年   292篇
  1999年   275篇
  1998年   300篇
  1997年   258篇
  1996年   265篇
  1995年   239篇
  1994年   222篇
  1993年   206篇
  1992年   170篇
  1991年   109篇
  1990年   176篇
  1989年   164篇
  1988年   111篇
  1987年   129篇
  1986年   133篇
  1985年   144篇
  1984年   136篇
  1983年   117篇
  1982年   134篇
  1981年   128篇
  1980年   104篇
  1979年   115篇
  1978年   79篇
  1977年   116篇
  1976年   91篇
  1975年   68篇
  1974年   64篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
This work aims to assess the influence of the chemical composition of the binder resulting from the reaction of phosphoric acid and volcanic ash on its final characteristics. Six initial compositions of volcanic ash phosphate geopolymer with molar ratios Fe/P of 0.27, 0.5, 0.54, 0.81, 1, and 1.5 were designed by adding various dosages of phosphoric acid to volcanic ash. The results show that the hardening time increases with the decrease of molar ratios Fe/P. An excess of phosphoric acid leads to an unstable binder that is partially destroyed with the aging of the binder. The volcanic ash phosphate geopolymer with molar ratios of Fe/P = 0.5–0.54 has the optimum compressive strength (49–53 MPa at 90 days), the lowest water absorption (8.8-9.5 wt.%) as well as porosity (18–19.6 vol.%). The main binder is a porous phase of ferro-silico-aluminophosphate. Secondary phases were also identified in some mixes including ferro-aluminophosphate and magnesium phosphate.  相似文献   
992.
The continuous use of chemical dyes in various industries, and their discharge into industrial effluents, results in severe problems to human life and water pollution. Laccases have the ability to decolorize dyes and toxic chemicals in industrial effluents as green biocatalysts. Their possible industrial applications have been limited by poor reusability, low stability, and loss of free laccase action. In this research, laccase was immobilized on zeolitic imidazolate framework coated multi-walled carbon nanotubes (Laccase@ZIF-8@MWCNTs) via metal affinity adsorption to develop an easy separable and stable enzyme. The optimum reaction conditions for immobilized laccase are at a pH of 3.0 and a temperature of 60?℃. The immobilized laccase was enhanced in storage and thermal stability. The results indicated that Laccase@ZIF-8@MWCNTs still maintained 68% of its original activity after 10 times of repeated use. Most importantly, the biocatalytic system was applied for decolorization of different dyes (20?mg·L?1) without a mediator, and up to 97.4% for Eriochrome black T and 95.6% Acid red 88 was achieved in 25 min. Biocatalysts with these properties may be used in a variety of environmental and industrial applications.  相似文献   
993.
Silicon - The synthesis, mechanical behaviour, and microstructure of metakaolin-based geopolymer mortar reinforced with quartz sand are presented in this investigation. Fine sand (quartz sand)...  相似文献   
994.

Titanium alloys are processed to develop a wide range of microstructure configurations and therefore material properties. While these properties are typically measured experimentally, a framework for property prediction could greatly enhance alloy design and manufacturing. Here a microstructure-sensitive framework is presented for the prediction of strength and ductility as well as estimates of the bounds in variability for these properties. The framework explicitly considers distributions of microstructure via new approaches for instantiation of structure in synthetic samples. The parametric evaluation strategy, including the finite element simulation package FEpX, is used to create and test virtual polycrystalline samples to evaluate the variability bounds of mechanical properties in Ti-6Al-4V. Critical parameters for the property evaluation framework are provided by measurements of single crystal properties and advanced characterization of microstructure and slip system strengths in 2D and 3D. Property distributions for yield strength and ductility are presented, along with the validation and verification steps undertaken. Comparisons between strain localization and slip activity in virtual samples and in experimental grain-scale strain measurements are also discussed.

  相似文献   
995.
996.
Recently, we presented the tribological evaluation of self-lubricating sintered steels produced by taking advantage of the powder injection molding process, the recently introduced plasma-assisted debinding and sintering process, and the in situ formation of solid lubricant particles. This new processing route promotes the in situ generation of nanostructured turbostratic graphite particles during silicon carbide dissociation. In this work, we present the influence of surface finishing on the tribological behavior of self-lubricating composites sintered at 1150°C with (3 and 5 wt%) and without SiC additions. We discuss the effects of the surface topography (Ra) on the friction coefficient and wear rates of specimens and counterbodies. The tribological behavior was analyzed using linear reciprocating sliding tests (constant load of 7 N, 60-min duration). It was shown that the reduction in surface roughness increased both the friction coefficients and wear rates of specimens and counterbodies, probably due to plastic deformation and consequent graphite reservoir sealing. Chemical analyses of the wear scars using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis showed a tribolayer that was composed predominantly of carbon and oxygen. Analyses of the wear scars showed traces of plastic deformation on both samples and counterbodies and the predominance of abrasion as the main wear mechanism.  相似文献   
997.
Ultrasound is an emerging technology that can be applied to monitor food processes. However, ultrasonic techniques are usually limited to research activities within a laboratory environment and they are not extensively used in industrial processes. The aim of this paper is to describe a novel ultrasonic sensor designed to monitor physical–chemical changes that occur in wines stored in industrial tanks. Essentially, the sensor consists of an ultrasonic transducer in contact with a buffer rod, mounted inside a stainless steel tube section. This structure allows the ultrasonic sensor to be directly installed in stainless steel tanks of an industrial plant. The operating principle of this design is based on the measurement of ultrasonic velocity of propagation. To test its proper operation, the sensor has been used to measure changes of concentration in aqueous samples and to monitor the progress of a malolactic fermentation of red wines in various commercial wineries. Results show the feasibility of using this sensor for monitoring malolactic fermentations in red wines placed in industrial tanks.  相似文献   
998.
Commercially available quantum dots have been encapsulated in a poly(methyl methacrylate) film and used as a luminescent downshifting layer on cadmium sulfide/cadmium telluride photovoltaic devices. Application of these films has resulted in a relative improvement to the short‐circuit current of over 4% by I–V measurement, with a significant increase in the contribution of short‐wavelength light resulting in 25% of the current available in this part of the spectrum being captured. The films have been shown to be highly scattering and the associated difficulties this provides to external quantum efficiency measurements have been discussed. A range of optical characterisation techniques, particularly laser beam induced current, have been used to probe the effect the films have on a cadmium sulfide/cadmium telluride device. An alternate methodology for performing external quantum efficiency measurements with the quantum dot films has been proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
999.
We fabricate thin epitaxial crystal silicon solar cells on display glass and fused silica substrates overcoated with a silicon seed layer. To confirm the quality of hot‐wire chemical vapor deposition epitaxy, we grow a 2‐µm‐thick absorber on a (100) monocrystalline Si layer transfer seed on display glass and achieve 6.5% efficiency with an open circuit voltage (VOC) of 586 mV without light‐trapping features. This device enables the evaluation of seed layers on display glass. Using polycrystalline seeds formed from amorphous silicon by laser‐induced mixed phase solidification (MPS) and electron beam crystallization, we demonstrate 2.9%, 476 mV (MPS) and 4.1%, 551 mV (electron beam crystallization) solar cells. Grain boundaries likely limit the solar cell grown on the MPS seed layer, and we establish an upper bound for the grain boundary recombination velocity (SGB) of 1.6x104 cm/s. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1000.
The gallium gradient in Cu(In,Ga)Se2 (CIGS) layers, which forms during the two industrially relevant deposition routes, the sequential and co‐evaporation processes, plays a key role in the device performance of CIGS thin‐film modules. In this contribution, we present a comprehensive study on the formation, nature, and consequences of gallium gradients in CIGS solar cells. The formation of gallium gradients is analyzed in real time during a rapid selenization process by in situ X‐ray measurements. In addition, the gallium grading of a CIGS layer grown with an in‐line co‐evaporation process is analyzed by means of depth profiling with mass spectrometry. This gallium gradient of a real solar cell served as input data for device simulations. Depth‐dependent occurrence of lateral inhomogeneities on the µm scale in CIGS deposited by the co‐evaporation process was investigated by highly spatially resolved luminescence measurements on etched CIGS samples, which revealed a dependence of the optical bandgap, the quasi‐Fermi level splitting, transition levels, and the vertical gallium gradient. Transmission electron microscopy analyses of CIGS cross‐sections point to a difference in gallium content in the near surface region of neighboring grains. Migration barriers for a copper‐vacancy‐mediated indium and gallium diffusion in CuInSe2 and CuGaSe2 were calculated using density functional theory. The migration barrier for the InCu antisite in CuGaSe2 is significantly lower compared with the GaCu antisite in CuInSe2, which is in accordance with the experimentally observed Ga gradients in CIGS layers grown by co‐evaporation and selenization processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号