首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61931篇
  免费   4970篇
  国内免费   2706篇
工业技术   69607篇
  2024年   175篇
  2023年   954篇
  2022年   1466篇
  2021年   2378篇
  2020年   1844篇
  2019年   1641篇
  2018年   1833篇
  2017年   2050篇
  2016年   1832篇
  2015年   2373篇
  2014年   3043篇
  2013年   3519篇
  2012年   3734篇
  2011年   4085篇
  2010年   3745篇
  2009年   3352篇
  2008年   3307篇
  2007年   3270篇
  2006年   3228篇
  2005年   2793篇
  2004年   2064篇
  2003年   2165篇
  2002年   2497篇
  2001年   2092篇
  2000年   1626篇
  1999年   1708篇
  1998年   1253篇
  1997年   1067篇
  1996年   1108篇
  1995年   844篇
  1994年   631篇
  1993年   467篇
  1992年   361篇
  1991年   270篇
  1990年   203篇
  1989年   165篇
  1988年   151篇
  1987年   86篇
  1986年   69篇
  1985年   37篇
  1984年   30篇
  1983年   23篇
  1982年   23篇
  1981年   13篇
  1980年   21篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 487 毫秒
31.
Hyperbolic phonon polaritons (HPhPs) in orthorhombic-phase molybdenum trioxide (α-MoO3) show in-plane hyperbolicity, great wavelength compression, and ultralong lifetime, therefore holding great potential in nanophotonic applications. However, its polaritonic response in the far-infrared (FIR) range remains unexplored due to challenges in experimental characterization. Here, monochromated electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) is used to probe HPhPs in α-MoO3 in both mid-infrared (MIR) and FIR frequencies and correlate their behaviors with microstructures and orientations. It is found that low structural symmetry leads to various phonon modes and multiple Reststrahlen bands (RBs) over a broad spectral range (over 70 meV) and in different directions (55–63 meV and 119–125 meV along the b-axis, 68–106 meV along the c-axis, and 101–121 meV along the a-axis). These HPhPs can be selectively excited by controlling the direction of swift electrons. These findings provide new opportunities in nanophotonic and optoelectronic applications, such as directed light propagation, hyperlenses, and heat transfer.  相似文献   
32.
Unreliable mobility values, and particularly greatly overestimated values and severely distorted temperature dependences, have recently hampered the development of the organic transistor field. Given that organic field‐effect transistors (OFETs) have been routinely used to evaluate mobility, precise parameter extraction using the electrical properties of OFETs is thus of primary importance. This review examines the origins of the various mobilities that must be determined for OFET applications, the relevant extraction methods, and the data selection limitations, which help in avoiding conceptual errors during mobility extraction. For increased precision, the review also discusses device fabrication considerations, calibration of both the specific gate‐dielectric capacitance and the threshold voltage, the contact effects, and the bias and temperature dependences, which must actually be handled with great care but have mostly been overlooked to date. This review serves as a systematic overview of the OFET mobility extraction process to ensure high precision and will also aid in improving future research.  相似文献   
33.
34.
35.
36.
It is of great urgency to design inexpensive and high-performance oxygen reduction reaction (ORR) electrocatalysts derived from biowastes as substitutes for Pt-based materials in electrochemical energy-conversion devices. Here we propose a strategy to synthesize three-dimensional (3D) porous nitrogen-doped network carbons to catalyze the ORR from two-step pyrolysis engineering of biowaste scale combined with the use of a ZnCl2 activator and a FeCl2 promotor. Electrochemical tests show that the synthesized network carbons have exhibited comparable ORR catalytic activity with a half-wave potential (~0.85 V vs. RHE) and outstanding cyclical stability in comparison to the Pt/C catalyst. Beyond that, a high electron transfer number (~3.8) and a low peroxide yield (<7.6%) can be obtained, indicating a four-electron reaction pathway. The maximum power density is ~68 mW cm?2, but continuous discharge curves (at a constant potential of ~1.30 V) for 12 h are not obviously declined in Zn-air battery tests using synthesized network carbons as the cathodic catalyst. The formation of 3D porous structures with high BET surface area can effectively expose the surface catalytic sites and promote mass transportation to boost the ORR activity. This work may open a new idea to prepare porous carbon-based catalysts for some important reactions in new energy devices.  相似文献   
37.
The effect of charge on the dihydrogen storage capacity of Sc2–C6H6 has been investigated at B3LYP-D3/6-311G(d,p) level. The neutral system Sc2–C6H6 can store 8H2 with gravimetric density of 8.76 wt %, and one H2 dissociates and bonds atomically on the scandium atom. The adsorption of 8H2 on Sc2–C6H6 is energetically favorable below 155 K. The atom-centered density matrix propagation (ADMP) molecular dynamics simulations show that Sc2–C6H6 can adsorb 3H2 within 1000 fs at 300K. Compared with Sc2–C6H6, the charged systems can adsorb more hydrogen molecules with higher gravimetric density, and all the H2 are adsorbed in the molecular form. The gravimetric densities of Sc2–C6H6+ and Sc2–C6H62+ are 9.75 and 10.71 wt%. Moreover, the maximum adsorption of charged systems are favorable in wider temperature range. Most importantly, the ADMP-MD simulations indicate that Sc2–C6H62+ can adsorb 6 hydrogen molecules within 1000 fs at 300K. It can be found that the gravimetric density (6.72 wt%) of Sc2–C6H62+ still exceeds the target of US Department of Energy (DOE) under ambient conditions.  相似文献   
38.
Due to the high health risks associated with indoor air pollutants and long-term exposure, indoor air quality has received increasing attention. In this study, we put emphasis on the molecular composition, source emissions, and chemical aging of air pollutants in a residence with designed activities mimicking ordinary Hong Kong homes. More than 150 air pollutants were detected at molecular level, 87 of which were quantified at a time resolution of not less than 1 hour. The indoor-to-outdoor ratios were higher than 1 for most of the primary air pollutants, due to emissions of indoor activities and indoor backgrounds (especially for aldehydes). In contrast, many secondary air pollutants exhibited higher concentrations in outdoor air. Painting ranked first in aldehyde emissions, which also caused great enhancement of aromatics. Incense burning had the highest emissions of particle-phase organics, with vanillic acid and syringic acid as markers. The other noteworthy fingerprints enabled by online measurements included linoleic acid, cholesterol, and oleic acid for cooking, 2,5-dimethylfuran, stigmasterol, iso-/anteiso-alkanes, and fructose isomers for smoking, C28-C34 even n-alkanes for candle burning, and monoterpenes for the use of air freshener, cleaning agents, and camphor oil. We showed clear evidence of chemical aging of cooking emissions, giving a hint of indoor heterogeneous chemistry. This study highlights the value of organic molecules measured at high time resolutions in enhancing our knowledge on indoor air quality.  相似文献   
39.
A cross-sectional study was conducted to investigate the impact of solid fuel use for heating and cooking on blood pressure (BP) and hypertension, using data from the China Health and Retirement Longitudinal Study (CHARLS). The primary fuels used for indoor heating and cooking were collected by questionnaires, respectively. Hypertension was defined based on self-report of physician's diagnosis, and/or measured BP, and/or anti-hypertensive medication use. Multivariate logistic regression models were constructed to assess the associations. Among 10 450 eligible participants, 68.2% and 57.2% used indoor solid fuel for heating and cooking, respectively. Compared with none/clean fuel users, solid fuel for heating was associated with elevated BP (adjusted β: 2.02, 95% CI: 1.04–3.01 for systolic BP; adjusted β: 1.36, 95% CI: 0.78–1.94 for diastolic BP) and increased risk of hypertension (adjusted odds ratio: 1.15, 95% CI: 1.03–1.29). The impact of indoor solid fuel for heating on BP was more evident in rural and north residents, and hypertensive patients. We did not detect any significant associations between solid fuel use for cooking and BP/hypertension. Indoor solid fuel use is prevalent in China, especially in the rural areas. Its negative impact on BP suggested that modernization of household fuel use may help to reduce the burden of hypertension in China.  相似文献   
40.
Qiaomu Yao  Liang Guo  Vasudevan Iyer 《传热工程》2019,40(13-14):1211-1219
Energy transfer from photo-excited electrons in a metal thin film to the dielectric substrate is important for understanding the ultrafast heat transfer process across the two materials. Substantial research has been conducted to investigate heat transfer in a metal-dielectric structure. In this work, a two-temperature model in metal was used to analyze the interface electron and dielectric substrate coupling. An improved temperature and wavelength-dependent Drude–Lorentz model was implemented to interpret the signals obtained in optical measurements. Ultrafast pump-and-probe measurements on Au-Si samples were carried out, where the probe photon energy was chosen to be close to the interband transition threshold of gold to minimize the influence of non-equilibrium electrons on the optical response and maximize the thermal modulation to the optical reflectance. Electron-substrate interface thermal conductance at different pump laser fluences was obtained, and was found to increase with the interface temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号