首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231536篇
  免费   18367篇
  国内免费   9006篇
工业技术   258909篇
  2024年   730篇
  2023年   3545篇
  2022年   6017篇
  2021年   8948篇
  2020年   6634篇
  2019年   5684篇
  2018年   6243篇
  2017年   7079篇
  2016年   6433篇
  2015年   8444篇
  2014年   10990篇
  2013年   13887篇
  2012年   14080篇
  2011年   15796篇
  2010年   13272篇
  2009年   13101篇
  2008年   12532篇
  2007年   11910篇
  2006年   12389篇
  2005年   10860篇
  2004年   7371篇
  2003年   6594篇
  2002年   6021篇
  2001年   5427篇
  2000年   5565篇
  1999年   6361篇
  1998年   5852篇
  1997年   4827篇
  1996年   4363篇
  1995年   3694篇
  1994年   3049篇
  1993年   2395篇
  1992年   1884篇
  1991年   1391篇
  1990年   1118篇
  1989年   971篇
  1988年   743篇
  1987年   531篇
  1986年   399篇
  1985年   349篇
  1984年   210篇
  1983年   195篇
  1982年   176篇
  1981年   145篇
  1980年   138篇
  1979年   103篇
  1978年   68篇
  1977年   70篇
  1976年   80篇
  1975年   41篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
32.
Femtosecond (fs) lasers have been proved to be reliable tools for high-precision and high-quality micromachining of ceramic materials. Nevertheless, fs laser processing using a single-mode beam with a Gaussian intensity distribution is difficult to obtain large-area flat and uniform processed surfaces. In this study, we utilize a customized diffractive optical element (DOE) to redistribute the laser pulse energy from Gaussian to square-shaped Flat-Top profile to realize centimeter-scale low-damage micromachining on single-crystal 4H–SiC substrates. We systematically investigated the effects of processing parameters on the changes in surface morphology and composition, and an optimal processing strategy was provided. Mechanisms of the formation of surface nanoparticles and the removal of surface micro-burrs were discussed. We also examined the distribution of subsurface defects caused by fs laser processing by removing a thin surface layer with a certain depth through chemical mechanical polishing (CMP). Our results show that laser-induced periodic surface structures (LIPSSs) covered by fine SiO2 nanoparticles form on the fs laser-processed areas. Under optimal parameters, the redeposition of SiO2 nanoparticles can be minimized, and the surface roughness Sa of processed areas reaches 120 ± 8 nm after the removal of a 10 μm thick surface layer. After the laser processing, micro-burrs on original surfaces are effectively removed, and thus the average profile roughness Rz of 2 mm long surface profiles decreases from 920 ± 120 nm to 286 ± 90 nm. No visible micro-pits can be found after removing ~1 μm thick surface layer from the laser-processed substrates.  相似文献   
33.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
34.
35.
36.
Shu  Fei  Dinneen  Jesse David  Chen  Shiji 《Scientometrics》2022,127(6):3613-3628
Scientometrics - Examining the relationships among scientific disciplines is important today, but existing methods are limited by the contents and structure of their bibliographic databases. We...  相似文献   
37.
With the blossom of information industry, electromagnetic wave technology shows increasingly potential in many fields. Nevertheless, the trouble caused by electromagnetic waves has also drawn extensive attention. For instance, electromagnetic pollution can threaten information safety in vital fields and the normal function of delicate electronic devices. Consequently, electromagnetic pollution and interference become an urgent issue that needs to be addressed. Carbon nanotubes (CNTs) have become a potential candidate to deal with these problems due to many advantages, such as high dielectric loss, remarkable thermodynamic stability, and low density. With the appearance of climbing demands, however, the carbon nanotubes combining various composites have shown greater prospects than the single CNTs in microwave absorbing materials. In this short review, recent advances in CNTs-based microwave absorbing materials were comprehensively discussed. Typically, we introduced the electromagnetic wave absorption mechanism of CNTs-based microwave absorbing materials and generalized the development of CNTs-based microwave absorbers, including CNTs-based magnetic metal composites, CNTs-based ferrite composites, and CNTs-based polymer composites. Ultimately, the growing trend and bottleneck of CNTs-based composites for microwave absorption were analyzed to provide some available ideas to more scientific workers.  相似文献   
38.
Various products, including foods and pharmaceuticals, are sensitive to temperature fluctuations. Thus, temperature monitoring during production, transportation, and storage is critical. Facile indicators are required to monitor temperature conditions via color changes in real time. This study aimed to prepare and apply thiol-functionalized covalent organic frameworks (COFs) as a novel indicator for monitoring thermal history and temperature abuse. The COFs underwent obvious color changes from bright yellow to purple after exposure to different temperatures for varying durations. The reaction kinetics are analyzed under isothermal conditions, which reveal that the order of reaction rates is k−20°C < k4°C < k20°C < k35°C < k55°C. The activation energy (Ea) of the COFs is calculated using the Arrhenius equation as 50.71 kJ moL−1. The COFs are capable of sensitive color changes and offer a broad temperature tracking range, thereby demonstrating their application potential for the monitoring of temperature and time exposure history during production, transportation, and storage. This excellent performance thermal history indicator also shows promise for expanding the application field of COFs.  相似文献   
39.
Thermal action in extraction process had effects on characteristic tryptic peptides identification and gelling properties of porcine gelatin. SDS-PAGE, HPLC-LTQ/Orbitrap high-resolution mass spectrometry, texture analyser and rheometer were used to evaluate collagen depolymerisation degree, characteristic tryptic peptides and gelling properties of gelatins prepared in various thermal actions. Results showed that with increasing temperature and time, depolymerisation degree enlarged, while gel strength, gelling and melting temperature decreased. Mass spectra showed that 47 and 49 common characteristic tryptic peptides were identified in gelatins extracted at 50 °C and 100 °C with various times, respectively. Moreover, 34 common characteristic tryptic peptides were identified in all gelatin samples. Further comparison between this work and our previous investigations yielded 20 common characteristic tryptic peptides, which stably exist in various thermal actions. These common characteristic tryptic peptides may be very helpful for the accurate authentication of porcine gelatin.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号