首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   24篇
  国内免费   2篇
工业技术   493篇
  2024年   1篇
  2023年   11篇
  2022年   28篇
  2021年   46篇
  2020年   26篇
  2019年   26篇
  2018年   36篇
  2017年   15篇
  2016年   12篇
  2015年   21篇
  2014年   27篇
  2013年   42篇
  2012年   34篇
  2011年   20篇
  2010年   14篇
  2009年   22篇
  2008年   18篇
  2007年   17篇
  2006年   13篇
  2005年   9篇
  2004年   5篇
  2003年   9篇
  2002年   15篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有493条查询结果,搜索用时 31 毫秒
481.
A novel system of CdSe quantum dots (QDs) sensitized porous hematite (α-Fe2O3) films has been investigated as a potential photoelectrode for hydrogen generation via photoelectrochemical (PEC) splitting of water. Before sensitization, nanoporous hematite thin films were prepared by spray pyrolysis. Characterizations for crystalline phase formation, crystallite size, absorption spectra, and flatband potential were carried out to analyze PEC data. Loading time of sensitizer to hematite thin films was found to be crucial in affecting its PEC properties. Film having sensitizer loading time as 42 h exhibited best photocurrent density of 550 μA cm−2 at 1.0 V versus SCE. Current study, for the first time, explores the possibility of using low band gap QDs sensitization on a low band gap film, hematite in PEC splitting of water.  相似文献   
482.
Rechargeable sodium-ion batteries (SIBs) are emerging as a viable alternative to lithium-ion battery (LIB) technology, as their raw materials are economical, geographically abundant (unlike lithium), and less toxic. The matured LIB technology contributes significantly to digital civilization, from mobile electronic devices to zero electric-vehicle emissions. However, with the increasing reliance on renewable energy sources and the anticipated integration of high-energy-density batteries into the grid, concerns have arisen regarding the sustainability of lithium due to its limited availability and consequent price escalations. In this context, SIBs have gained attention as a potential energy storage alternative, benefiting from the abundance of sodium and sharing electrochemical characteristics similar to LIBs. Furthermore, high-entropy chemistry has emerged as a new paradigm, promising to enhance energy density and accelerate advancements in battery technology to meet the growing energy demands. This review uncovers the fundamentals, current progress, and the views on the future of SIB technologies, with a discussion focused on the design of novel materials. The crucial factors, such as morphology, crystal defects, and doping, that can tune electrochemistry, which should inspire young researchers in battery technology to identify and work on challenging research problems, are also reviewed.  相似文献   
483.
Assays utilizing fluorophores are common throughout life science research and diagnostics, although detection limits are generally limited by weak emission intensity, thus requiring many labeled target molecules to combine their output to achieve higher signal-to-noise. We describe how the synergistic coupling of plasmonic and photonic modes can significantly boost the emission from fluorophores. By optimally matching the resonant modes of a plasmonic fluor (PF) nanoparticle and a photonic crystal (PC) with the absorption and emission spectrum of the fluorescent dye, a 52-fold improvement in signal intensity is observed, enabling individual PFs to be observed and digitally counted, where one PF tag represents one detected target molecule. The amplification can be attributed to the strong near-field enhancement due to the cavity-induced activation of the PF, PC band structure-mediated improvement in collection efficiency, and increased rate of spontaneous emission. The applicability of the method by dose-response characterization of a sandwich immunoassay for human interleukin-6, a biomarker used to assist diagnosis of cancer, inflammation, sepsis, and autoimmune disease is demonstrated. A limit of detection of 10 fg mL−1 and 100 fg mL−1 in buffer and human plasma respectively, is achieved, representing a capability nearly three orders of magnitude lower than standard immunoassays.  相似文献   
484.
Peesa  Rohit Bhargav  Panda  Deepak Kumar 《SILICON》2022,14(4):1705-1711
Silicon - In this paper, we present a double gate JL-TFET based biosensor by varying the gate dielectric constant to detect various biomolecules through label-free detection technique. An...  相似文献   
485.
Vijaya  Pidaparthy  Lorenzo  Rohit 《SILICON》2022,14(13):7889-7900
Silicon - In present days, the improved performance in nanoscale dimensions is of enormous need than conventional CMOS devices. This paper presents an insight into Trigate FinFET in 5 nm technology...  相似文献   
486.
487.
The development of advanced electrode materials for the next generation of electrochemical energy storage (EES) solutions has attracted profound research attention as a key enabling technology toward decarbonization and electrification of transportation. Since the discovery of graphene's remarkable properties, 2D nanomaterials, derivatives, and heterostructures thereof, have emerged as some of the most promising electrode components in batteries and supercapacitors owing to their unique and tunable physical, chemical, and electronic properties, commonly not observed in their 3D counterparts. This review particularly focuses on recent advances in EES technologies related to 2D crystals originating from non-layered 3D solids (non-van der Waals; nvdW) and their hallmark features pertaining to this field of application. Emphasis is given to the methods and challenges in top-down and bottom-up strategies toward nvdW 2D sheets and their influence on the materials’ features, such as charge transport properties, functionalization, or adsorption dynamics. The exciting advances in nvdW 2D-based electrode materials of different compositions and mechanisms of operation in EES are discussed. Finally, the opportunities and challenges of nvdW 2D systems are highlighted not only in electrochemical energy storage but also in other applications, including spintronics, magnetism, and catalysis.  相似文献   
488.
The optimal control problem consists of a performance index subject to a set of differential equations that describes the path of the control and state variables. The main aim of this article is to prove the existence and uniqueness of a mild solution, optimal control, and time-optimal control of a mixed Volterra–Fredholm-type third-order dispersion system. By applying the strongly continuous semigroup theory and the Banach fixed-point theorem, we prove the existence and uniqueness of the considered system. The optimal control results are proved by using Mazur's lemma, Gronwall's inequality, and the minimizing sequence technique. The discussion on the time-optimal control of the third-order dispersion system is also presented.  相似文献   
489.
Four new CoII complexes, [Co(bpy)2(acac)]Cl ( 1 ), [Co(phen)2(acac)]Cl ( 2 ), [Co(bpy)2(cur)]Cl ( 3 ), [Co(phen)2(cur)]Cl ( 4 ), where bpy=2,2’-bipyridine ( 1 and 3 ), phen=1,10-phenanthroline ( 2 and 4 ), acac = acetylacetonate ( 1 and 2 ), cur=curcumin monoanion ( 3 and 4 ) have been designed, synthesized and fully characterized. The X-ray crystal structures of 1 and 2 indicated that the CoN4O2 core has a distorted octahedral geometry. The photoactivity of these complexes was tuned by varying the π conjugation in the ligands. Curcumin complexes 3 and 4 had an intense absorption band near 435 nm, which made them useful as visible-light photodynamic therapy agents; they also showed fluorescence with λem≈565 nm. This fluorescence was useful for studying their intracellular uptake and localization in MCF-7 breast cancer cells. The acetylacetonate complexes ( 1 and 2 ) were used as control complexes to understand the role of curcumin. The white-light-triggered anticancer profiles of the cytosol targeting complexes 3 and 4 were investigated in detail. These non-dark toxic complexes displayed significant apoptotic photo-cytotoxicity (under visible light) against MCF-7 cells through ROS generation. The control complexes 1 and 2 did not induce significant cell death in the light or dark. Interestingly, 1-4 produced a remarkable antibacterial response upon light exposure. Overall, the reported results here can increase the boundary of the CoII-based anticancer and antibacterial drug development.  相似文献   
490.
Journal of Inorganic and Organometallic Polymers and Materials - Current study delineates the synthesis and environmental applications of ZnO/CuO nanocomposite in photocatalysis and gas sensing....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号