首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2341篇
  免费   192篇
  国内免费   9篇
工业技术   2542篇
  2024年   5篇
  2023年   64篇
  2022年   100篇
  2021年   223篇
  2020年   141篇
  2019年   115篇
  2018年   171篇
  2017年   155篇
  2016年   153篇
  2015年   108篇
  2014年   146篇
  2013年   198篇
  2012年   154篇
  2011年   194篇
  2010年   106篇
  2009年   108篇
  2008年   55篇
  2007年   53篇
  2006年   48篇
  2005年   35篇
  2004年   28篇
  2003年   35篇
  2002年   20篇
  2001年   11篇
  2000年   11篇
  1999年   8篇
  1998年   15篇
  1997年   3篇
  1996年   7篇
  1995年   10篇
  1994年   4篇
  1993年   9篇
  1992年   9篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1984年   3篇
  1983年   1篇
  1982年   6篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有2542条查询结果,搜索用时 17 毫秒
31.
Hydrogels are polymeric materials widely used in medicine due to their similarity with the biological components of the body. Hydrogels are biocompatible materials that have the potential to promote cell proliferation and tissue support because of their hydrophilic nature, porous structure, and elastic mechanical properties. In this work, we demonstrate the microwave-assisted synthesis of three molecular weight varieties of poly(ethylene glycol) dimethacrylate (PEGDMA) with different mechanical and thermal properties and the rapid photo of them using 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184) as UV photoinitiator. The effects of the poly(ethylene glycol) molecular weight and degree of acrylation on swelling, mechanical, and rheological properties of hydrogels were investigated. The biodegradability of the PEGDMA hydrogels, as well as the ability to grow and proliferate cells, was examined for its viability as a scaffold in tissue engineering. Altogether, the biomaterial hydrogel properties open the way for applications in the field of regenerative medicine for functional scaffolds and tissues.  相似文献   
32.
Due to the fast development in data communication systems and computer networks in recent years, the necessity to protect the secret data has become extremely imperative. Several methods have been proposed to protect the secret data; one of them is the secret sharing scheme. It is a method of distributing a secret K among a finite set of participants, in such a way that only predefined subset of participant is enabled to reconstruct a secret from their shares. A secret sharing scheme realizing uniform access structure described by a graph has received a considerable attention. In this scheme, each vertex represents a participant and each edge represents a minimum authorized subset. In this paper, an independent dominating set of vertices in a graph G is introduced and applied as a novel idea to construct a secret sharing scheme such that the vertices of the graph represent the participants and the dominating set of vertices in G represents the minimal authorized set. While most of the previous schemes were based on the principle of adjacent vertices, the proposed scheme is based upon the principle of non-adjacent vertices. We prove that the scheme is perfect, and the lower bound of the information rate of this new construction is improved when compared to some well-known previous constructions. We include an experiment involving security threats to demonstrate the effectiveness of the proposed scheme.  相似文献   
33.
With the rapid development of visual digital media, the demand for better quality of service has increased the pressure on broadcasters to automate their error detection and restoration activities for preserving their archives. Digital dropout is one of the defects that affect archived visual materials and tends to occur in block by block basis (size of 8 × 8). It is well established that human visual system (HVS) is highly adapted to the statistics of its visual natural environment. Consequently, in this paper, we have formulated digital dropout detection as a classification problem which predicts block label based on statistical features. These statistical features are indicative of perceptual quality relevant to human visual perception, and allow pristine images to be distinguished from distorted ones. Here, the idea is to extract discriminant block statistical features based on discrete cosine transform (DCT) coefficients and determine an optimal neighborhood sampling strategy to enhance the discrimination ability of block representation. Since this spatial frame based approach is free from any motion computation dependency, it works perfectly in the presence of fast moving objects. Experiments are performed on video archives to evaluate the efficacy of the proposed technique.  相似文献   
34.
This paper introduces a robust voiced/non-voiced (VnV) speech classification method using bivariate empirical mode decomposition (bEMD). Fractional Gaussian noise (fGn) is employed as the reference signal to derive a data adaptive threshold for VnV discrimination. The analyzing speech signal and fGn are combined to generate a complex signal which is decomposed into a finite number of complex-valued intrinsic mode functions (IMFs) by using bEMD. The real and imaginary parts of the IMFs represent the IMFs of observed speech and fGn, respectively. The log-energies of both types of IMFs are calculated. There exist similarities between the IMF log-energy representation of fGn and unvoiced speech signals. Hence, the upper confidence limit from IMF log-energies of fGn is used as data adaptive threshold for VnV classification. If the subband log-energy of speech segment exceeds the threshold, the segment is classified as voiced and unvoiced otherwise. The experimental results show that the proposed algorithm performs better than the recently reported methods without requiring any training data for a wide range of SNRs.  相似文献   
35.
IT firms vary in their performance to improve the environmental sustainability of their own operations and in their ability to provide products and solutions that enable and transform the environmental sustainability of other industries. In the parlance of the balanced scorecard, performance has two dimensions, that is, “drivers” and “outcomes”. The drivers, also known as leading performance indicators, refer to learning and innovation, processes, and customer value propositions. The outcomes, also known as lagging performance indicators, refer to financial results. This study has developed and validated an instrument to measure the environmentally sustainable IT performance (eSITP) drivers. We established the nomological network of the eSITP by drawing from several theoretical domains in the areas of innovation antecedents and values, balanced performance measurement and IT and eco-sustainability. Based on a survey of 133 IT firms, we developed and validated a four-dimension, 17 items eSITP instrument covering eco-learning, eco-process, eco-brand and eco-value governance. The instrument is validated by following a seven step rigorous process. The paper breaks new ground from both research and practice perspectives. The instrument makes it easier for other researchers who wish to explain the leading (drivers) and lagging (outcomes) of IT firms’ environmental sustainability and for IT business managers who want to improve their environmental sustainability performance.  相似文献   
36.
Meteorological changes urge engineering communities to look for sustainable and clean energy technologies to keep the environment safe by reducing CO2 emissions. The structure of these technologies relies on the deep integration of advanced data-driven techniques which can ensure efcient energy generation, transmission, and distribution. After conducting thorough research for more than a decade, the concept of the smart grid (SG) has emerged, and its practice around the world paves the ways for efcient use of reliable energy technology. However, many developing features evoke keen interest and their improvements can be regarded as the next-generation smart grid (NGSG). Also, to deal with the non-linearity and uncertainty, the emergence of data-driven NGSG technology can become a great initiative to reduce the diverse impact of non-linearity. This paper exhibits the conceptual framework of NGSG by enabling some intelligent technical features to ensure its reliable operation, including intelligent control, agent-based energy conversion, edge computing for energy management, internet of things (IoT) enabled inverter, agent-oriented demand side management, etc. Also, a study on the development of data-driven NGSG is discussed to facilitate the use of emerging data-driven techniques (DDTs) for the sustainable operation of the SG. The prospects of DDTs in the NGSG and their adaptation challenges in real-time are also explored in this paper from various points of view including engineering, technology, et al. Finally, the trends of DDTs towards securing sustainable and clean energy evolution from the NGSG technology in order to keep the environment safe is also studied, while some major future issues are highlighted. This paper can ofer extended support for engineers and researchers in the context of data-driven technology and the SG.  相似文献   
37.
Miniaturization and energy consumption by computational systems remain major challenges to address. Optoelectronics based synaptic and light sensing provide an exciting platform for neuromorphic processing and vision applications offering several advantages. It is highly desirable to achieve single-element image sensors that allow reception of information and execution of in-memory computing processes while maintaining memory for much longer durations without the need for frequent electrical or optical rehearsals. In this work, ultra-thin (<3 nm) doped indium oxide (In2O3) layers are engineered to demonstrate a monolithic two-terminal ultraviolet (UV) sensing and processing system with long optical state retention operating at 50 mV. This endows features of several conductance states within the persistent photocurrent window that are harnessed to show learning capabilities and significantly reduce the number of rehearsals. The atomically thin sheets are implemented as a focal plane array (FPA) for UV spectrum based proof-of-concept vision system capable of pattern recognition and memorization required for imaging and detection applications. This integrated light sensing and memory system is deployed to illustrate capabilities for real-time, in-sensor memorization, and recognition tasks. This study provides an important template to engineer miniaturized and low operating voltage neuromorphic platforms across the light spectrum based on application demand.  相似文献   
38.
Developing selective and coherent polymorphic crystals at the nanoscale offers a novel strategy for designing integrated architectures for photonic and optoelectronic applications such as metasurfaces, optical gratings, photodetectors, and image sensors. Here, a direct optical writing approach is demonstrated to deterministically create polymorphic 2D materials by locally inducing metallic 1T′-MoTe2 on the semiconducting 2H-MoTe2 host layer. In the polymorphic-engineered MoTe2, 2H- and 1T′- crystalline phases exhibit strong optical contrast from near-infrared to telecom-band ranges (1–1.5 µm), due to the change in the band structure and increase in surface roughness. Sevenfold enhancement of third harmonic generation intensity is realized with conversion efficiency (susceptibility) of ≈1.7 × 10−7 (1.1 × 10−19 m2 V−2) and ≈1.7 × 10−8 (0.3 × 10−19 m2 V−2) for 1T′ and 2H-MoTe2, respectively at telecom-band ultrafast pump laser. Lastly, based on polymorphic engineering on MoTe2, a Schottky photodiode with a high photoresponsivity of 90 AW−1 is demonstrated. This study proposes facile polymorphic engineered structures that will greatly benefit realizing integrated photonics and optoelectronic circuits.  相似文献   
39.
In this paper, in order to improve the received signal strength (RSS) and signal quality, three arrays of electronically steerable parasitic array radiator (ESPAR) antennas are suggested for the ultra-high frequency (UHF) radio frequency identification (RFID) communication and sensing system applications. Instead of the single antenna, the array antennas have recently been widely used in many communication systems because of their peak gains, better radiation patterns, and higher radiation efficiency. Also, there are some important issues to use the antenna array like high data rates in wireless communication systems and to better understand the many targets or sensors. In this article, a wireless sensor network (WSN) is being investigated to overcome multipath fading and interference by antenna nulling technology that can be achieved through beam control ESPAR array antennas. The proposed ESPAR array antennas exhibit higher gains like 9.63, 10.2, and 12 dBi and proper radiation patterns from one array to another. Moreover, we investigate the mutual coupling effect on the performance of array antennas with different spacing (0.5λ, 0.75λ, λ) and configurations. It is found that the worst mutual coupling reduced by −28 to −34 dB for 2 × 2 array, −3 to −43 dB for 2 × 3 array, and finally −42 dB to −51 dB due to the antenna spacing from 0.5λ to λ. Thus, these suggested antennas could effectively be applied in the WSN communication systems, internet of things (IoT) networks, and massive wireless and backscatter communication systems.  相似文献   
40.
International Journal of Wireless Information Networks - This paper exhibits the confidentiality performance study of a cooperative multicast network consisting of $${\mathcal {K}}$$ asymmetric...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号