首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   17篇
  国内免费   6篇
工业技术   138篇
  2024年   1篇
  2023年   7篇
  2022年   11篇
  2021年   5篇
  2020年   8篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   10篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   10篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1998年   4篇
  1997年   5篇
  1996年   8篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有138条查询结果,搜索用时 265 毫秒
71.
碳化钨颗粒尺寸对超音速火焰喷涂WC-Co涂层形成的影响   总被引:5,自引:0,他引:5  
通过探讨WC颗粒对扁平粒子厚度及喷涂后WC颗粒尺寸变化的影响,研究了超音速火焰喷涂过程中WC-Co涂层的沉积过程,使用具有不同WC尺寸的四种WC-Co粉末,采用JET-KOTE喷枪系统喷制了WC-Co涂层。结果发现涂层中WC颗粒的大小主要取决于原始粉末中WC的尺寸.在粉末穿越火焰的过程中,大多数WC处于固态,WC-Co涂层的沉积涉及固液两相离子的扁平化,而不是象在优化条件下金属或陶瓷材料喷涂过程中仅存在单一液相的情况.很明显WC-Co粉末中的WC的大小对涂层的形成影响很大,在超音速火焰喷漆条件下当液固粒子碰撞到已形成的涂层表面上时,其中的大颗粒WC粒子容易被反弹脱落。基于实验结果,提出厂计算由液相聚积固相形成的液固两相颗粒碰撞到表面时形成扁平粒子的厚度的模型。  相似文献   
72.
通过探讨WC颗粒对扁平粒子厚度及喷涂后WC颗粒尺寸变化的影响,研究了超音速火焰喷涂过程中WC-Co深层的沉积过程。使用具有不同WC尺寸的四种WC-Co粉末,采用JET-KOTE喷枪系统喷制了WC-Co涂层。结果发现涂层中WC颗粒的大小主要取决于原始粉末中WC的尺寸.在粉末穿越火焰的过程中,大多数WC处于固态;WC-Co涂层的沉积涉及固液两相离子的扁平化,而不是象在优化条件下金属或陶瓷材料喷涂过程中仅存在单一液相的情况。很明显WC-Co粉末中的WC的大小对涂层的形成影响很大、在超音速火焰喷涂条件下当液固粒子碰撞到已形成的涂层表面上时,其中的大颗粒WC粒子容易被反弹脱落。基于实验结果,提出了计算由液相聚积固相形成的波固两相颗粒碰撞到表面时形成扁平粒子的厚度的模型。  相似文献   
73.
因涂层材料适用范围广、基材适应性强、工艺灵活等特点,热喷涂陶瓷涂层作为一类新型耐磨涂层已经在很多领域获得成功应用。然而,现代工业发展对耐苛刻条件下严酷磨损的高性能耐磨涂层提出了越来越高的需求,如何通过材料?工艺的整体技术体系进行涂层结构的有效调控,成为涂层技术领域的重要研究课题之一。本文在简要介绍热喷涂陶瓷涂层作为耐磨涂层应用现状的基础上,提取出对涂层耐磨性具有普遍意义的层内扁平粒子间界面结合这一重要的涂层结构本质特征,明确了涂层内扁平粒子间界面强化的基本思路,阐述了基于界面同质强化和界面异质强化的两条思路进行层间结合界面强化的研究进展,以期为面向更高耐磨性能的热喷涂陶瓷涂层的材料选择、结构设计以及工艺优化提供有益参考。  相似文献   
74.
阳极微结构尤其是表面结构的调控对固体氧化物燃料电池 (SOFC) 的极化与性能具有显著的影响。大气等 离子喷涂 (APS) 和高温烧结是金属支撑 SOFC 阳极功能层最常用的两种制备方法。本文采用 APS 和高温烧结两 种制备方法,在相同的金属支撑体上沉积阳极功能层以获得具有不同阳极 / 电解质界面结构的 SOFC。对两种阳 极功能层的组织结构、表面粗糙度、比表面积和物相构成进行了研究。结果表明,两种方法制备的阳极组织形貌 差别较大,高温烧结的阳极功能层表面具有良好的平整度,而 APS 制备的阳极功能层呈现出典型的层状结构, 表面粗糙度和比表面积较大。从断面形貌中可以看出,高温烧结阳极电池的电解质功能层厚度均一,两种电池阳 极与电解质功能层之间均结合紧密。两种电池的输出性能结果表明,APS 阳极电池具有较高的输出性能和较低的 电极极化阻抗。  相似文献   
75.
冷喷涂特性   总被引:27,自引:0,他引:27  
冷喷涂技术是近年来发展起来的新型喷涂技术,该方法通过低温(<600℃)的高速固态粒子与基体发生塑性碰撞而实现涂层沉积,可以避免喷涂材料在喷涂过程中受热影响而发生氧化,分解等,可以将喷涂材料的组织结构在不发生变化的条件下移植到基体表面,简要介绍了冷喷涂技术的原理与特点,冷喷涂层的组织结构与性能以及涂层沉积特性与行为的研究现状,粒子的速度对于涂层的沉积起着决定性作用,对于一定的材料存在一临界速度,约为500-600m/s,当粒子速度超过该临界速度后,随着速度的增加,沉积效率增加,最高可以达到80%以上,迄今的研究表明,冷喷涂可以实现大多数金属材料甚至金属陶瓷材料的沉积。  相似文献   
76.
冷喷涂过程的低温特性决定了其适合制备氧化敏感性的 Ti 及 Ti 合金涂层,由于 Ti 金属的难变形性,使得很难得到高质量的冷喷涂涂层。 国内外学者对冷喷涂制备 Ti 及 Ti 合金涂层开展了初步研究工作。 文中在大量文献分析的基础上对冷喷涂制备 Ti 及 Ti 合金涂层组织调控手段进行了分类总结。 目前,对冷喷钛及钛合金涂层的调控手段主要集中在喷涂参数、粉末状态、基体状态和喷嘴等 4 个方面。 除此之外,一些新兴的技术如原位喷丸辅助技术、温喷涂技术也被证明是一种有效的增强难变形粒子变形的技术。 未来对冷喷涂 Ti 及 Ti 合金涂层的研究既要注重冷喷涂工艺本身,又要加强与其他加工技术的融合。  相似文献   
77.
中国冷喷涂研究进展   总被引:18,自引:1,他引:17  
冷喷涂是通过高速固态颗粒依次与固态基体碰撞后、经过适当的变形牢固结合在基体表面而依次沉积形成沉积层的方法.其关键技术是控制不同材料粒子的速度超过其相应的临界速度.文中总结了中国冷喷涂研究的进展.10年来,中国对冷喷涂的研究有了长足进展,发表的论文数量从2000年1篇增加到2007年的28篇.在冷喷涂设备系统研究的基础上,研究工作的基本方法包括数值模拟和试验研究两个方面.当前中国冷喷涂涂层沉积研究基本处于国际前沿,实现了多种金属合金材料、金属间化合物、金属陶瓷与陶瓷涂层的沉积.涂层不仅可以用作保护涂层,还可以用作功能涂层,具有钎料功能的涂层可以通过冷喷涂预制钎料而为钎焊作准备,关于涂层的结合、涂层内颗粒之间的结合、涂层沉积过程规律与组织结构的控制等相关的基础研究还有待于深入开展.  相似文献   
78.
采用冷喷涂方法在镍基高温合金基体(Incone1738)上沉积纳米结构NiCrA1Y涂层,通过扫描电镜与能谱分析、X射线衍射,研究了在Ar气氛下热处理温度对氧化膜组织结构及成分的影响。结果表明,在Ar气氛下,经900℃处理后,涂层表面局部生成针状θ-Al2O3。在1000℃以上热处理后,涂层表面生成的球状的α—Al2O3,氧化膜均匀连续覆盖在涂层表面,但局部较厚的氧化膜呈现双层结构,外层为Cr2O3或尖晶石氧化物,内层为α—Al2O3且连续均匀。  相似文献   
79.
喷涂工艺参数对NICrBSi涂层显微组织和性能的影响   总被引:6,自引:1,他引:5  
孙波  李长久  白勇峰 《材料保护》2001,34(11):30-31
采用微束等离子喷涂系统制备了NiCrBSi涂层。研究了电弧功率、喷涂距离和等离子气体流量对涂层显微组织和性能的影响。试验结果表明,NiCrBSi涂层的致密程度与显微硬度随电弧功率和气体流量的增加而增加。当喷涂距离超过40mm时,喷涂距离对涂层显微硬度没有显著影响。采用微束等离子喷涂工艺制备的NiCrBSi涂层显微硬度可达HV0.2700。  相似文献   
80.
真空冷喷涂是一种基于室温及真空条件下超细陶瓷粉末粒子的撞击破碎实现涂层沉积的方法。目前,真空冷喷涂技术已经在微电子器件,金属防护以及新能源领域展现了良好的应用前景。本研究将目光转向锂离子电池,基于真空冷喷涂技术,在氧化铝基体上制备了锂离子电池LiNi_(0.33)Co_(0.33)Mn_(0.33)O_2(NMC)三元材料正极涂层,使用扫面电子显微镜(SEM)观察了NMC涂层的表面及截面微观形貌,使用X射线衍射(XRD)对涂层的相结构进行了测试,使用3D激光显微镜表征了涂层的表面粗糙度,系统研究了载气流量、喷涂距离、喷涂次数等沉积条件对NMC涂层微观形貌及粒子沉积行为的影响。结果表明,在真空冷喷涂NMC涂层中可以观察到明显颗粒破碎沉积现象,涂层结构致密。NMC粉末颗粒沉积方式受气流量、喷涂距离、喷涂次数等沉积条件的影响,载气流量的提高会提高粒子撞击速度,从而提高涂层沉积速率,但过高的气流量会导致粒子发生冲蚀,在涂层表面留下凹坑,致使涂层粗糙度增大。喷涂距离过大会导致NMC颗粒撞击速度减小,粒子破碎不充分,涂层呈现出类似团聚粉末堆积的疏松结构。喷涂次数影响涂层厚度,在合适的沉积参数条件下,可以通过调整喷涂次数实现涂层厚度的线性调控。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号