首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   8篇
工业技术   56篇
  2024年   1篇
  2023年   4篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   6篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   8篇
  2006年   3篇
  2005年   2篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
11.
采用内氧化法制备了0.6Al2O3/Cu复合材料,以该复合材料棒材为原料制备了点焊电极,并进行了装机试验和微观组织结构分析。研究结果表明:采用内氧化法制备的0.6Al2O3/Cu复合材料在铜基体中弥散分布着纳米级细小Al2O3颗粒。由于Al2O3颗粒硬度高,热稳定性和化学稳定性好,使该复合材料制备的点焊电极抗塑性变形能力强、抗坑蚀能力优良、再结晶温度高,并具有优越的抗粘接能力,使用寿命是铬锆铜电极的3倍多。  相似文献   
12.
采用放电等离子烧结法(SPS)制备TiB2质量分数为1wt%~5wt%的TiB2/Cu复合材料,测试其导电率和硬度。当TiB2质量分数由0增至5wt%时,复合材料的导电率由96.9%(International Annealed Copper Standard,IACS)降至65.1%(IACS),布氏硬度由42.8增至65.2。对所制备的不同TiB2质量分数的TiB2/Cu复合材料在直流24 V、不同电流条件下进行电接触实验,探究TiB2添加量和电流对TiB2/Cu复合材料耐电弧侵蚀性能的影响。结果表明,TiB2/Cu复合材料的平均燃弧时间、平均燃弧能量和材料损耗量随着电流的增加而增加,TiB2/Cu复合材料的阴极损耗量高于阳极,整体上TiB2/Cu复合材料由阴极向阳极转移。在24 V和25 A条件下,不同TiB2质量分数的TiB2/Cu复合材料的燃弧时间和燃弧能量随操作次数增加不断波动,整体上呈逐渐增加的趋势,3wt% TiB2/Cu复合材料的稳定性最高,平均燃弧时间和燃弧能量最低。随着TiB2质量分数的增加,TiB2/Cu复合材料损耗量降低,表面蚀坑变浅。  相似文献   
13.
根据列车受电弓系统的实际工况条件,在自制的销-盘式载流摩擦磨损试验机上研究了Al2O3弥散强化铜合金销试样和黄铜(H62)盘试样摩擦副在载流条件下的滑动摩擦磨损性能,试验条件为速度20m/s、载荷0.63MPa、电流25-75A。试验结果表明,电流对黄铜/Al2O3弥散强化铜合金摩擦副的滑动干摩擦行为具有显著影响。随电流的增加,销试样的磨损率增加,摩擦因数增大,试样表层发生了磨粒磨损和粘着磨损。  相似文献   
14.
为改善Al2O3弥散强化铜的变形性能,通过向弥散强化铜中加入软质相纯铜组元,研究纯铜组元对弥散强化铜烧结坯变形性能的影响。对弥散铜烧结坯进行热压缩变形实验,获得了其不同热变形条件下的真应力应变曲线,建立了基于双曲正弦本构关系Arrhenius流变应力模型的本构方程,并计算获得热激活能值Q与应变速率敏感系数值m;对热挤压试样,进行室温性能检测和微观组织表征。结果表明:加入纯铜组元后,弥散铜烧结坯应力应变曲线峰值应力下降,曲线走势波动减弱,变形试样缺陷减少,热激活能Q降低,变形难度下降。应变速率较低时,纯铜组元的加入使得m值增加,弥散强化铜的塑性变好;应变速率较高时,纯铜组元的加入加剧基体软硬相不协调变形,m值降低,塑性变差。纯铜组元的加入使热挤压弥散铜的强化相浓度降低,硬度下降,导电率提升,晶粒变大。  相似文献   
15.
针对目前支架、机构箱等汽车用关键零部件采用传统大气条件下熔炼+砂型重力浇注工艺制备的铸件普遍存在铸造缺陷多、综合性能较差等问题,在真空中频感应炉中采用石墨坩埚熔炼+气体保护浇注+金属型凝固工艺制备了ZL101A合金铸锭,分别测试了铸态和经535℃×8 h固溶+180℃×3 h、5h、7h不同时效工艺T6热处理后合金的力学性能,观察了合金微观组织,并同传统大气熔铸工艺制备的合金性能和微观组织进行了对比.结果表明:采用真空熔铸法制备的合金铸态条件下硬度为HB68.5,抗拉强度和伸长率分别为178MPa和4.7%,较之大气熔铸工艺制备的合金硬度提高了2.1%,抗拉强度和伸长率分别提高了9.2%和14.6%;经535℃×8 h固溶+180℃×3 h时效处理后,硬度达到HB117,抗拉强度和伸长率分别达到329MPa和8.5%;铸态合金中初生相α-Al比例较高,共晶相含量较低,Si主要以灰色骨骼状分布在共晶相中.在试验条件下,该工艺制备的合金综合性能优良.  相似文献   
16.
采用放电等离子烧结法(SPS)制备了不同TiB2颗粒粒径的3wt% TiB2/Cu复合材料,研究了3wt% TiB2/Cu复合材料致密度、导电率、硬度和耐电弧侵蚀性能随TiB2颗粒粒径的变化规律,重点分析了不同TiB2颗粒粒径的3wt% TiB2/Cu复合材料耐电弧侵蚀行为。结果表明:3wt% TiB2/Cu复合材料致密度和硬度随TiB2颗粒粒径的增大而略有降低;TiB2颗粒粒径越小,TiB2/Cu复合材料的综合性能越好。随着TiB2颗粒粒径的增大,3wt% TiB2/Cu复合材料耐蚀稳定性降低,3wt% TiB2/Cu阴极材料的损耗量明显增加;当TiB2颗粒粒径为10 μm时,3wt% TiB2/Cu复合材料的耐电弧侵蚀性能最佳。电弧蚀形貌观察表明:不同TiB2颗粒粒径的3wt% TiB2/Cu复合材料经电弧侵蚀后,3wt% TiB2/Cu复合材料均由阴极向阳极发生转移;随着TiB2颗粒粒径的增大,阴极质量损耗逐渐增加,触头表面电弧侵蚀面积增加;而在Cu基体中引入较小的TiB2颗粒,有利于减弱电接触实验过程中TiB2/Cu复合材料的喷溅现象。   相似文献   
17.
采用粉末冶金工艺制备了不同配比的多粒径(2 μm+10 μm+50 μm) TiB2/Cu复合材料。通过JF04C触点材料测试系统对多粒径TiB2/Cu复合材料进行耐电弧侵蚀性能试验,研究(2 μm+10 μm+50 μm) TiB2颗粒质量比分别为1∶1∶1、1∶1∶3、1∶3∶1、3∶1∶1时,TiB2/Cu复合材料的耐电弧侵蚀性能及电弧侵蚀形貌变化规律,探究多粒径配比对TiB2/Cu复合材料表层耐电弧侵蚀行为的影响。结果表明:当(2 μm+10 μm+50 μm) TiB2颗粒质量比为1∶1∶1时,TiB2/Cu复合材料相对密度和导电率最高,分别为99.1%和87.1%IACS。当(2 μm+10 μm+50 μm) TiB2颗粒质量比为1∶1∶1和1∶3∶1时,TiB2/Cu复合材料的组织均匀性较好,电弧侵蚀后材料损失相同,材料转移量最少。其中,质量比为1∶3∶1时,TiB2/Cu复合材料平均燃弧能量最低,且燃弧时间和燃弧能量最稳定。研究表明,这与复合材料的综合物理性能密切相关。在颗粒增强Cu基复合材料设计过程中,引入合适配比的多粒径TiB2颗粒有助于提高TiB2/Cu复合材料的密度、导电率等综合物理性能。电弧侵蚀过程中,不同粒径的TiB2颗粒相互协同作用,有助于提高TiB2/Cu复合材料的耐电弧侵蚀性能和服役稳定性。   相似文献   
18.
以Cu2O为氧源,对Cu-Al合金平板试样进行了内氧化处理,使试样表面获得Al2O3弥散强化铜合金层,并进行了不同变形量的冷轧变形;测定了内氧化前后和冷变形前后试样硬度和导电率,并进行了微观组织观察。结果表明:内氧化处理后,合金表面硬度与合金导电率大幅度提高;随着变形量的增加,合金表面硬度值急剧升高,而电导率随着变形量的增加则略有下降。微观组织研究表明:内氧化后合金表面存在大量的纳米级Al2O3颗粒,使合金表面具有高的硬度;随着变形量的增加,位错密度升高,位错与第二相粒子的作用加剧,从而使合金表面的硬度进一步提高;同时由于Al2O3颗粒周围位错缠结的增多,增强了电子的散射作用,导致合金电导率随变形量增加呈下降趋势。  相似文献   
19.
林阳明  宋克兴  国秀花 《铸造技术》2005,26(10):959-962
Al2O3弥散强化铜复合材料(ADSCC)因其具有优良的高强度高导电性能以及抗高温软化性能而成为备受瞩目的一种工程材料.研究了ADSCC的微观组织和拉伸性能.研究表明该材料相比Cu-Cr合金(Cr0.7%)在高温下具有很高的强度保持比.材料的强度随温度的升高而下降.对ADSCC的微观组织研究表明该材料的强度高主要是因为Al2O3颗粒的弥散分布限制了位错运动,阻碍了晶粒长大和Cu基体的再结晶.动态回复和局部再结晶是主要的软化机制.断裂特征表现为局部韧性断裂.  相似文献   
20.
将纳米级A12O3以体积分数为1%的配比与微米级Cu粉混合均匀后,采用放电等离子烧结(SPS)法,分别在750、800和850℃进行烧结制备复合材料;将同样的混合粉末采用冷压烧结制备复合材料作为对比.分别测试材料的密度、硬度、导电率,并进行SEM扫描电镜分析.结果表明:在所选择试验参数下,烧结温度为800℃ SPS烧结试样具有最高的相对密度,达到99.17%,硬度与导电率也最高;与冷压烧结制备的材料相比,SPS法制备的试样硬度和导电率更高;SPS烧结试样晶粒均匀细小,并出现了孪晶.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号