首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   26篇
  国内免费   1篇
工业技术   452篇
  2024年   1篇
  2023年   5篇
  2022年   17篇
  2021年   53篇
  2020年   18篇
  2019年   15篇
  2018年   22篇
  2017年   20篇
  2016年   26篇
  2015年   21篇
  2014年   21篇
  2013年   34篇
  2012年   21篇
  2011年   22篇
  2010年   17篇
  2009年   21篇
  2008年   10篇
  2007年   15篇
  2006年   18篇
  2005年   10篇
  2004年   12篇
  2003年   11篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有452条查询结果,搜索用时 31 毫秒
91.
Application of mechanics of multi-phase porous media for modeling cement based materials at high temperature is presented. The considerations are based on the mathematical model of mechanistic type, developed by the authors within recent years. The model has been previously experimentally validated and successfully applied for analyzing performance of various concrete structures at high temperature. Physical phenomena in a concrete element heated during a fire are described and analyzed, confirming multi-phase nature of concrete in these conditions. Main stages of the mathematical model development by means of hygro-thermo-mechanics of porous media are briefly presented. The mass, energy and linear momentum conservation equations at micro-scale are given and averaged in space to obtain the macroscopic form of the equations. Some main key-points in modeling cement-based materials at high temperature are discussed. Final form of the model equations and method of their numerical solution are presented. The model is validated by comparison with some published results of experimental studies. Two examples of the model application for numerical simulation of concrete structures exposed to fire conditions, including also a cooling phase, are analyzed.  相似文献   
92.
93.
Anodic porous alumina is a well-known template material for nanofabrication. To obtain highly ordered nanoporous array, sophisticated and expensive methods are applied. On the other hand there is two-step self organized anodization, which is much cheaper, but obtained alumina arrangement is not ideal. In our paper, influence of the first step of anodization on the final AAO structure arrangement is studied in details. Anodizations were carried out in 0.3 M oxalic acid at 35 °C at various potentials and durations of the first step of anodization. Second step of the anodization was constant for all the experiments and was 15 min long. Oxide layer thickness formed during the first step of the anodization was 50, 100, 150 and 200 μm and after oxide removal, remaining concaves were serving as a mask for further growth during second step of the anodization. The longer first step of anodization, the higher regularity ratio and circularity, and lower percentage of defects in the nanoporous array. Anodic porous alumina was formed at four various potentials: 30, 40, 50, 60 V. The best arrangement of nanopores was found for samples anodized at 40 V. Maximum of regularity ratio was corresponding to the minimum of defect content in the AAO array. Long enough first step of two-step self-organized anodization in 0.3 M oxalic acid can provide high-ordered nanoporous template for fabrication of various nanomaterials with new, unique properties.  相似文献   
94.
This work demonstrates the influence of changes in parameters of vacuum drying (temperature and pressure) on the sorption properties of dried strawberries. Fruits were dried at 50 and 70°C under pressures of 4 and 16 kPa. Vacuum drying was also conducted during the first 4 h at 70°C and then the temperature was decreased to 50°C at a pressure of 4 kPa. The other combination included increasing the pressure after the first 4 h from 4 to 16 kPa at a drying temperature of 70°C. Sorption isotherms were determined in the dried strawberries. It was shown that with increasing drying temperatures, there was a notable deterioration in the capacity for absorbing water vapor by the vacuum-dried fruit. On the other hand, the pressure at which vacuum drying proceeded did not significantly affect water vapor absorption. Changing the parameters of vacuum drying—that is, temperature in the range of 50–70°C and pressure in the range of 4–16 kPa—affected the shape and structure of the resultant dried strawberries. The combination of vacuum drying with convective drying also influenced the shape and structure of the dried fruit.  相似文献   
95.
This article presents the results from research related to graphene functionality based on the production of spatial structures provided for the reversible storage of hydrogen. The functionality process was conducted during graphene synthesis onto a liquid metallic support, on a single level, using SiC nanoparticles. Within the scope of research it was proved that heterogenic growth of the domains of polycrystalline graphene onto the SiC nanoparticles is possible. These nanoparticles are in-built into the graphene structure constituting the pillars of the spatial structure. Material produced in such a way constitutes the foundation for creating a spatial 3D structure (through the rolling operation), called GraphRoll, for the reversible storage of hydrogen in order to conduct its sorption and de-sorption. So, independently of the theoretical configuration, deviations or a possible exception from the 2D configuration on the silicon carbide/graphene were discussed. These differences resulted from the difference between the crystallographic structures of the analyzed forms as well as the structure determined to decrease tensions within the structure.  相似文献   
96.
Isosymmetric structural phase transition (IPT, type 0), in which there are no changes in the occupation of Wyckoff positions, the number of atoms in the unit cell, and the space group symmetry, is relatively uncommon. Chlorothiazide, a diuretic agent with a secondary function as an antihypertensive, has been proven to undergo pressure-induced IPT of Form I to Form II at 4.2 GPa. For that reason, it has been chosen as a model compound in this study to determine if IPT can be predicted in silico using periodic DFT calculations. The transformation of Form II into Form I, occurring under decompression, was observed in geometry optimization calculations. However, the reverse transition was not detected, although the calculated differences in the DFT energies and thermodynamic parameters indicated that Form II should be more stable at increased pressure. Finally, the IPT was successfully simulated using ab initio molecular dynamics calculations.  相似文献   
97.
In the present work, hydrogen generation through hydrolysis of a NaBH4(s)/catalyst(s) solid mixture was realized for the first time as a solid/liquid compact hydrogen storage system using Co nanoparticles as a model catalyst. The performance of the system was analysed from both the thermodynamic and kinetic points of view and compared with the classical catalyzed hydrolysis of a NaBH4 solution. The kinetic analysis of the NaBH4(s)/catalyst(s)/H2O(l) system shows that the reaction is first order with respect to the catalyst concentration, and the activation energy equal to 35 kJ molNaBH4−1. Additionally, calorimetric measurements of the heat evolved during the hydrolysis of NaBH4 solutions evidence the global process energy (−217 kJ molNaBH4−1). Characterization of the cobalt nanoparticles before and after the hydrolysis associated with the calorimetric measurements suggests the “in situ” formation of a catalytically active CoxB phase through “reduction” of an outer protective oxide layer that is regenerated at the end of reaction.  相似文献   
98.
Phase relations were established for the Ce–Ag–Si system at 850°C by means of X-ray diffraction, light optical microscopy and quantitative electron probe microanalysis. Phase equilibria are characterised by the existence of extended solid solutions starting from the binaries: Ce(AgxSi1−x)2−y (ThSi2-type), Ce(Ag1−xSix)1−y (unknown structure type) and Ce(Ag1−xSix)2−y (unknown structure type). Three ternary phases were found to exist, CeAg2Si2 (ThCr2Si2-type), Ce(AgxSi1−x)2−y (AlB2-type) and the new ternary compound CeAgSi2 with unknown structure type. Magnetic behaviour was studied from magnetic susceptibility and magnetisation measurements down to 1.7 K and employing magnetic fields up to 5 T. Soft ferromagnetism is observed for CeAgxSi2−x (AlB2-type) below 5 K. Alloys Ce(AgxSi1−x)2−y with 0.08<xAg<0.30 (ThSi2-type) encounter ferromagnetic order below 7 K. For xAg=0.31 the ferromagnetic interaction changes to antiferromagnetism with TN=5.7 K. For CeAgSi2 ferrimagnetic or canted antiferromagnetic order is indicated below 7 K.  相似文献   
99.
The synthesis of solid solutions of AlN–SiC was investigated through the combustion reaction between Si3N4, aluminum, and carbon powders and nitrogen gas at pressures ranging from 0.1 to 6.0 MPa. The combustion reaction was initiated locally and then the wave front propagated spontaneously, passing through the cylindrical bed containing the loose powder. In the presence of Si3N4 as a reactant, it was feasible to synthesize solid solutions at an ambient pressure (0.1 MPa). The relationship between nitrogen pressure and full-width at half-maximum of the (110) peak of the product showed that lower pressures produced more-homogeneous solid solutions. Some aspects of formation of the AlN–SiC solid solutions were discussed with special emphasis on the influence of nitrogen pressure and reactant stoichiometry.  相似文献   
100.
Due to the fact that surfactant molecules are known to alter the structure (and consequently the function) of a protein, protein–surfactant interactions are very important in the biological, pharmaceutical, and cosmetic industries. Although there are numerous studies on the interactions of albumins with surfactants, the investigations are often performed at fixed environmental conditions and limited to separate surface-active agents and consequently do not present an appropriate comparison between their different types and structures. In the present paper, the interactions between selected cationic, anionic, and nonionic surfactants, namely hexadecylpyridinium chloride (CPC), hexadecyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), polyethylene glycol sorbitan monolaurate, monopalmitate, and monooleate (TWEEN 20, TWEEN 40, and TWEEN 80, respectively) with bovine serum albumin (BSA) were studied qualitatively and quantitatively in an aqueous solution (10 mM cacodylate buffer; pH 5.0 and 7.0) by steady-state fluorescence spectroscopy supported by UV spectrophotometry and CD spectroscopy. Since in the case of all studied systems, the fluorescence intensity of BSA decreased regularly and significantly under the action of the surfactants added, the fluorescence quenching mechanism was analyzed thoroughly with the use of the Stern–Volmer equation (and its modification) and attributed to the formation of BSA–surfactant complexes. The binding efficiency and mode of interactions were evaluated among others by the determination, comparison, and discussion of the values of binding (association) constants of the newly formed complexes and the corresponding thermodynamic parameters (ΔG, ΔH, ΔS). Furthermore, the influence of the structure of the chosen surfactants (charge of hydrophilic head and length of hydrophobic chain) as well as different environmental conditions (pH, temperature) on the binding mode and the strength of the interaction has been investigated and elucidated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号