首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   6篇
工业技术   172篇
  2023年   1篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   9篇
  2012年   12篇
  2011年   21篇
  2010年   19篇
  2009年   28篇
  2008年   13篇
  2007年   11篇
  2006年   11篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有172条查询结果,搜索用时 656 毫秒
91.
This article presents the condensation heat transfer and flow characteristics of R-134a flowing through corrugated tubes experimentally. The test section is a horizontal counter-flow concentric tube-in-tube heat exchanger 2000 mm in length. A smooth copper tube and corrugated copper tubes having inner diameters of 8.7 mm are used as an inner tube. The outer tube is made from smooth copper tube having an inner diameter of 21.2 mm. The corrugation pitches used in this study are 5.08, 6.35, and 8.46 mm. Similarly, the corrugation depths are 1, 1.25, and 1.5 mm, respectively. The test conditions are performed at saturation temperatures of 40–50 °C, heat fluxes of 5–10 kW/m2, mass fluxes of 200–700 kg/m2 s, and equivalent Reynolds numbers of 30000–120000. The Nusselt number and two-phase friction factor obtained from the corrugated tubes are significantly higher than those obtained from the smooth tube. Finally, new correlations are developed based on the present experimental data for predicting the Nusselt number and two-phase friction factor for corrugated tubes.  相似文献   
92.
An experimental and numerical study on convection heat transfer of water flowing through an alternating cross‐section flattened (ACF) tube are investigated in this paper. The thermal‐fluid characteristics were evaluated by numerical simulation. The test run conditions covered a mass flux of 200 to 800 kg m?2 s?1, a heat flux of 10 kW/m2, and an inlet temperature of 40°C. The results showed that the Nusselt number increased with the increase in mass flux. Moreover, the heat transfer was also affected by the flow characteristics. Vortices were formed at the curved wall, and their intensities were increased along the flow direction. It was also found that the heat transfer and pressure drop were larger than that of the circular tube. However, the thermal performance was greater than the pressure loss penalty. The comparison results showed that the ACF tube had better performance than the circular tube. Further, the details of heat transfer, flow resistance, and fluid behavior were investigated and discussed in this study.  相似文献   
93.
SrCO3 and BaCO3 nanoparticles were synthesized using Sr(NO3)2 or Ba(NO3)2 and Na2CO3 as starting materials in ethylene glycol by ultrasonic irradiation at 80 °C for 1-5 h. Their phases, vibration modes and morphologies were characterized using X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, selected area electron diffraction (SAED) and transmission electron microscopy (TEM). These products were found to be orthorhombic SrCO3 and BaCO3 nanoparticles with 20-50 nm and 40-100 nm ranges, respectively. Asymmetric stretching, symmetric stretching, and out of plane and in plane bending vibrations of CO32− complexes were also detected.  相似文献   
94.
This paper presents a numerical study of the flow characteristics of refrigerants flowing through adiabatic helically coiled capillary tubes. The theoretical model is based on conservation of mass, energy and momentum of the fluids in the capillary tube. The two-phase flow model developed was based on the homogeneous flow assumption. The viscosity model was also based on recommendations from the literature. The developed model can be considered as an effective tool for designing and optimizing capillary tubes working with newer alternative refrigerants. The model is validated by comparison with the experimental data of Kim et al. (2002) for R-22, R-407C and R-410A, and Zhou and Zhang (2006) for R-22. The results obtained from the present model show reasonable agreement with the experimental data. The proposed model can be used to design helical capillary tubes working with various refrigerants.  相似文献   
95.
LiOH·H2O, Co(NO3)2·6H2O and NH4VO3 were used to prepare nano-crystalline LiCoVO4 by 150 °C solvothermal reaction in isopropanol for 10–360 h and subsequent calcination at 300–500 °C for 6 h. XRD, TEM and selected area electron diffraction (SAED) revealed the presence of nano-crystalline LiCoVO4 with inverse spinel structure. The V–O stretching vibration modes of VO4 tetrahedrons were detected by FTIR over the range 617–835 cm− 1 and by Raman spectrometer at 805.7 and 783.1 cm− 1. Co, V and O were detected by EDX. TGA of solvothermal products shows weight loss due to the evaporation and decomposition processes at 40–648 °C.  相似文献   
96.
The reinforcement of a natural rubber compound by various surface-modified precipitated silicas was compared. Compound physical properties were determined for two silicas differing in surface area and were used as controls to evaluate these silicas after surface modification by using either a bifunctional organosilane coupling agent (γ-mercaptopropyl–trimethoxysilane) or a new surface modification process. This new process is based on the in situ polymerization of organic monomers solubilized inside surfactant bilayers that are adsorbed onto the silica surface to afford silicas modified with styrene–butadiene and styrene–isoprene copolymers. Both surface modification processes afford materials that dramatically increase the compound cure rate, thereby significantly reducing T90 cure times, while also improving tensile properties, tear strength, abrasion resistance, and compression set of the cured compound. The silane-modified silica gives a higher flex-cracking resistance than do the silicas modified by the in situ polymerization of organic monomers, whereas these latter silicas significantly increase rebound resilience and offer greater overall improvements in rubber compound performance. The rubber compound physical properties obtained using the modified, higher surface area Hi-Sil® 255 silica are generally improved relative to those obtained using the modified Hi-Sil® 233 silica. © 1996 John Wiley & Sons, Inc.  相似文献   
97.
The term of nanofluid refers to a solid–liquid mixture with a continuous phase which is a nanometer sized nanoparticle dispersed in conventional base fluids. In order to study the heat transfer behavior of the nanofluids, precise values of thermal and physical properties such as specific heat, viscosity and thermal conductivity of the nanofluids are required. There are a few well-known correlations for predicting the thermal and physical properties of nanofluids which are often cited by researchers to calculate the convective heat transfer behaviors of the nanofluids. Each researcher has used different models of the thermophysical properties in their works. This article aims to summarize the various models for predicting the thermophysical properties of nanofluids which have been commonly cited by a number of researchers and use them to calculate the experimental convective heat transfer coefficient of the nanofluid flowing in a double-tube counter flow heat exchanger. The effects of these models on the predicted value of the convective heat transfer of nanofluid with low nanoparticle concentration are discussed in detail.  相似文献   
98.
Gd-doped PbMoO_4 nanoparticles were prepared by a refluxing method at 80℃ for 2 h.Effect of molar content of Gd dopant on phase,morphology and optical properties was studied.The as-prepared Gddoped PbMoO_4 samples can be indexed to pure tetragonal PbMoO_4 phase.The particles size of PbMoO_4 is decreased with increasing in the molar content of Gd dopant from 15.20±3.04 nm for pure PbMoO_4 to 8.72±1.53 nm for 5 mol% Gd-doped PbMoO_4.The absorption of 5 mol% Gd-doped PbMoO_4 nanoparticles shows red-shift caused by lattice distortion of PbMoO_4.The photocatalytic performance of 5 mol% Gddoped PbMoO_4 nanoparticles shows the highest degradation of rhodamine B(RhB) of 97.92% under UV radiation and 67.65% under visible radiation because Gd~(3+) dopant as an electron acceptor plays the role in enhancing the separation of electron-hole pair.  相似文献   
99.
Perovskite LaFeO3 nanoparticles were successfully synthesized by microwave plasma method combined with high temperature calcination at 700–1000?°C. The influences of calcination temperature on morphology, crystalline structure, purity and the atomic compositions of samples were studied. The photocatalytic performance of LaFeO3 was evaluated though the photodegradation of Rhodamine B (RhB) under visible light. In this research, the orthorhombic LaFeO3 nanoparticles showed band gaps in the range of 2.15–2.30?eV. The particle size increased with increasing in the calcination temperature, leading to the decreasing in the surface area. The LaFeO3 sample calcined at 900?°C showed the highest photodegradation of 77.8% and the apparent rate constant of 0.0077?min?1 within 180?min because of the narrower of band gap and the higher crystalline degree and oxygen adsorption.  相似文献   
100.
A methanol–water mixed solvent was used as a reaction medium for the preparation of Eu3+-doped YVO4 phosphor materials. These were synthesized by a solvothermal method at 150°–300°C using a 10 vol% solution of water in methanol as the reaction medium followed by calcination at 1000°–1200°C. The phase composition and optical properties of the products were characterized by X-ray diffraction, scanning electron microscope, and photoluminescence spectroscopy. The powders obtained were composed of spherical particles ∼0.5 μm in size, with an internal structure that was different for samples prepared under subcritical and supercritical conditions of methanol. After the calcination, the powders obtained at 240°–300°C retained the initial raspberry-like morphology, whereas the morphology of samples prepared at 150°–210°C changed significantly due to noticeable sintering. The fluorescence intensity exhibited by the prepared samples was higher than the fluorescence intensity shown by one of the best commercial YVO4:Eu phosphors having a large particle size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号