首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   37篇
  国内免费   4篇
工业技术   555篇
  2023年   11篇
  2022年   17篇
  2021年   33篇
  2020年   24篇
  2019年   28篇
  2018年   46篇
  2017年   33篇
  2016年   31篇
  2015年   23篇
  2014年   29篇
  2013年   49篇
  2012年   34篇
  2011年   36篇
  2010年   31篇
  2009年   26篇
  2008年   21篇
  2007年   19篇
  2006年   15篇
  2005年   10篇
  2004年   6篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1993年   3篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
排序方式: 共有555条查询结果,搜索用时 15 毫秒
51.
Nowadays, solvent‐free, one‐part cyanoacrylate adhesive is widely used in medicine and dentistry. According to a literature survey done by the authors, there are few papers concentrated on the role of nano‐sized particles on the thermal behavior of cyanoacrylate glue. Thus the main goal of the current research focused on clarifying the role of nano‐sized SiO2 on the thermal behavior of cyanoacrylate. Thermal behavior of all materials including cyanoacrylate and its nanocomposites was studied by using Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods. The results of DSC analysis showed that an increase in the amount of nano‐sized SiO2 results in decreases in the duration of cyanoacrylate curing, energy release during polymerization, and incubation time of polymerization. Furthermore, the results of TGA tests illustrated that the weight loss of cyanoacrylate strongly depends on the contents of both caffeine and SiO2. In fact, an increase in nano‐sized SiO2 content increases the degradation temperature of cyanoacrylate. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   
52.
Journal of Mechanical Science and Technology - III-conditioning at the inverse equation of integral method in ring-core residual stress measurement leads to high stress sensitivity to strain...  相似文献   
53.
The sugar composition and viscoelastic behaviour of Iranian gum tragacanth exuded by six species of Astragalus was investigated at a concentration of 1.3% and varying ionic strength using a controlled shear-rate rheometer. Compositional analysis of the six species of gum tragacanth by high-performance anion-exchange chromatography with pulsed amperometric detection suggested the occurrence of arabinose, xylose, glucose, galactose, fucose, rhamnose and galacturonic acid residues in the gum structure; however, the proportions of each sugar varied significantly among the gums from the different species of Astragalus, and this variation led to interesting differences in functional properties. Rheological measurements performed on dispersions of the six species of gum tragacanth demonstrated viscoelastic properties. The mechanical spectra derived from strain sweep and frequency sweep measurements indicated that the different gum tragacanth dispersions had distinctive viscoelastic behaviours. Investigation of the viscoelastic properties of the different gum dispersions in the presence of NaCl revealed that the addition of NaCl could lead to slight to drastic decreases in the G′, G″ or η values of the various gums. In general, the results indicated that the six varieties of gum tragacanth studied exhibited significantly different rheological properties; therefore, these different gums may find use in a variety of applications as stabilisers, thickeners, emulsifiers and suspending agents depending on their rheological behaviour.  相似文献   
54.

Material behavior beyond the elastic limit can be rate-dependent, and this rate sensitivity can be captured by the viscoplastic material models. To describe the viscoplastic material behavior in structural analysis, an efficient numerical framework is necessary. In this paper an algorithm is proposed for metals for which von Mises yield surface along with Peri?’s viscoplastic model is employed. The efficiency and accuracy of the technique is examined by comparison with different numerical studies. The convergence rate of the proposed algorithm is investigated. Characteristics of the viscoplastic behavior such as relaxation are illustrated in the selected case studies. Finally, application of the algorithm in practice is demonstrated by a boundary value problem.

  相似文献   
55.
56.
57.
The miniaturization of microelectromechanical systems (MEMS) physical sensors is driven by global connectivity needs and is closely linked to emerging digital technologies and the Internet of Things. Strong technical advantages of miniaturization such as improved sensitivity, functionality, and power consumption are accompanied by significant economic benefits due to semiconductor manufacturing. Hence, the trend to produce smaller sensors and their driving force resemble very much those of the miniaturization of integrated circuits (ICs) as described by Moore's law. In this respect, with its IC-, and MEMS-compatibility, and scalability, the silicon nanowire is frequently employed in frontier research as the sensor building block replacing conventional sensors. The integration of the silicon nanowire with MEMS has thus generated a multiscale hybrid architecture, where the silicon nanowire serves as the piezoresistive transducer and MEMS provide an interface with external forces, such as inertial or magnetic. This approach has been reported for almost all physical sensor types over the last decade. These sensors are reviewed here with detailed classification. In each case, associated technological challenges and comparisons with conventional counterparts are provided. Future directions and opportunities are highlighted.  相似文献   
58.
59.
60.
In this communication, the kinetic parameters of methane hydrate formation (induction time, quantity and rate of gas uptake, storage capacity (SC), and apparent rate constant) in the presence of sodium dodecyl sulfate (SDS), synthetized silver nanoparticles (SNPs), and mixture of SDS?+?SNPs have been studied. Experimental measurements were performed at temperature of 273.65?K and initial pressure of 7?MPa in a 460?cm3 stirred batch reactor. Our results show that adding SDS, SNPs and their mixture increases the quantity of gas uptake, water to hydrate conversion, and SC of methane hydrate formation, noticeably. Using 300?ppm SDS increases the SC and the quantity of methane uptake 615, and 770%, respectively, compared with pure water. Investigating the hydrate growth rate at the start of hydrate formation process shows that, using SNPs, SDS, and their mixture increases the initial apparent rate constant of hydrate rate, considerably. Our results show that the system of methane?+?water?+?SDS 500?ppm?+?SNPs 45?µM represents the maximum value of initial apparent rate constant, compared with other tested systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号