首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3246477篇
  免费   273152篇
  国内免费   14168篇
医药卫生   3533797篇
  2021年   55744篇
  2020年   35540篇
  2019年   58735篇
  2018年   71409篇
  2017年   54418篇
  2016年   60187篇
  2015年   74420篇
  2014年   108898篇
  2013年   174370篇
  2012年   91234篇
  2011年   90238篇
  2010年   116375篇
  2009年   121395篇
  2008年   76622篇
  2007年   79611篇
  2006年   90457篇
  2005年   86024篇
  2004年   87900篇
  2003年   78729篇
  2002年   68158篇
  2001年   85748篇
  2000年   77796篇
  1999年   81442篇
  1998年   63808篇
  1997年   62097篇
  1996年   59757篇
  1995年   55282篇
  1994年   49528篇
  1993年   46313篇
  1992年   58341篇
  1991年   55489篇
  1990年   52657篇
  1989年   52177篇
  1988年   48902篇
  1987年   47767篇
  1986年   45599篇
  1985年   46165篇
  1984年   44041篇
  1983年   40644篇
  1982年   40508篇
  1981年   38326篇
  1980年   36236篇
  1979年   37355篇
  1978年   33852篇
  1977年   31090篇
  1976年   28318篇
  1975年   26816篇
  1974年   28036篇
  1973年   26929篇
  1972年   25363篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
92.
93.
Dupuytren’s disease with severe finger contractures and recurrent contractures following previous surgery often have extensive skin involvement. In these severe cases, excision of the diseased chord along with the involved skin is a good option to reduce the risk of recurrance. The resulting skin defect can be covered with a full thickness skin graft (FTSG) or a cross finger flap. Cross finger flaps have donor finger morbidity and hence a full thickness graft is usually preferred. The FTSG extending to the midlateral margins on both sides of the finger reduces the risk of joint contracture due to graft shrinkage. Once the FTSG is sutured in place, the standard practice is to compress and secure the graft to its recipient bed with a tie-over dressing and this can be time consuming. We present a simple dressing technique to secure the FTSG without the need for a tie-over dressing.  相似文献   
94.
Delayed contrast enhancement after injection of a gadolinium-chelate (Gd-chelate) is a reference imaging method to detect myocardial tissue changes. Its localization within the thickness of the myocardial wall allows differentiating various pathological processes such as myocardial infarction (MI), inflammatory myocarditis, and cardiomyopathies. The aim of the study was first to characterize benign myocarditis using quantitative delayed-enhancement imaging and then to investigate whether the measure of the extracellular volume fraction (ECV) can be used to discriminate between MI and myocarditis.In 6 patients with acute benign myocarditis (32.2 ± 13.8 year-old, subepicardial late gadolinium enhancement [LGE]) and 18 patients with MI (52.3 ± 10.9 year-old, subendocardial/transmural LGE), myocardial T1 was determined using the Modified Look-Locker Imaging (MOLLI) sequence at 3 Tesla before and after Gd-chelate injection. T1 values were compared in LGE and normal regions of the myocardium. The myocardial T1 values were normalized to the T1 of blood, and the ECV was calculated from T1 values of myocardium and blood pre- and post-Gd injection.In both myocarditis and MI, the T1 was lower in LGE regions than in normal regions of the left ventricle. T1 of LGE areas was significantly higher in myocarditis than in MI (446.8 ± 45.8 vs 360.5 ± 66.9 ms, P = 0.003) and ECV was lower in myocarditis than in MI (34.5 ± 3.3 vs 53.8 ± 13.0 %, P = 0.004).Both inflammatory process and chronic fibrosis induce LGE (subepicardial in myocarditis and subendocardial in MI). The present study demonstrates that the determination of T1 and ECV is able to differentiate the 2 histological patterns.Further investigation will indicate whether the severity of ECV changes might help refine the predictive risk of LGE in myocarditis.  相似文献   
95.
96.
97.
98.
99.
100.
Geneticists have, for years, understood the nature of genome‐wide association studies using common genomic variants. Recently, however, focus has shifted to the analysis of rare variants. This presents potential problems for researchers, as rare variants do not always behave in the same way common variants do, sometimes rendering decades of solid intuition moot. In this paper, we present examples of the differences between common and rare variants. We show why one must be significantly more careful about the origin of rare variants, and how failing to do so can lead to highly inflated type I error. We then explain how to best avoid such concerns with careful understanding and study design. Additionally, we demonstrate that a seemingly low error rate in next‐generation sequencing can dramatically impact the false‐positive rate for rare variants. This is due to the fact that rare variants are, by definition, seen infrequently, making it hard to distinguish between errors and real variants. Compounding this problem is the fact that the proportion of errors is likely to get worse, not better, with increasing sample size. One cannot simply scale their way up in order to solve this problem. Understanding these potential pitfalls is a key step in successfully identifying true associations between rare variants and diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号