首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   1篇
地球科学   154篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   10篇
  2017年   5篇
  2016年   9篇
  2015年   6篇
  2014年   6篇
  2013年   9篇
  2012年   8篇
  2011年   5篇
  2010年   7篇
  2009年   8篇
  2008年   9篇
  2007年   11篇
  2006年   15篇
  2005年   7篇
  2004年   5篇
  2003年   8篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
41.
The effect of intergranular water on the conductivity of polycrystalline brucite, Mg(OH)2, was investigated using impedance spectroscopy at 2 GPa, during consecutive heating–cooling cycles in the 298–980 K range. The grain boundary hydration levels tested here span water activities from around unity (wet conditions) down to 10−4 (dry conditions) depending on temperature. Four orders of magnitude in water activity result in electrical conductivity variations for about 6–7 orders of magnitude at 2 GPa and room temperature. Wet brucite samples containing, initially, about 18 wt% of evaporable water (i.e. totally removed at temperatures below 393 K in air), display electrical conductivity values above 10−2–10−3 S/m. A.C. electrical conductivity as a function of temperature follows an Arrhenius behaviour with an activation energy of 0.11 eV. The electrical conductivity of the same polycrystalline brucite material dried beforehand at 393 K (dry conditions) is lower by about 5–6 orders of magnitude at room temperature and possesses an activation energy of 0.8–0.9 eV which is close to that of protonic diffusion in (001) brucitic planes. Above ca. 873 K, a non-reversible conductivity jump is observed which is interpreted as a water transfer from mineral bulk to grain boundaries (i.e. partial dehydration). Cooling of such partially dehydrated sample shows electrical conductivities much higher than those of the initially dry sample by 4 orders of magnitude at 500 K. Furthermore, the corresponding activation energy is decreased by a factor of about four (i.e. 0.21 eV). Buffering of the sample at low water activity has been achieved by adding CaO or MgO, two hygroscopic compounds, to the starting material. Then, sample conductivities reached the lowest values encountered in this study with the activation energy of 1.1 eV. The strong dependency of the electrical conductivity with water activity highlights the importance of the latter parameter as a controlling factor of diffusion rates in natural processes where water availability and activity may vary grandly. Water exchange between mineral bulk and mineral boundary suggests that grain boundary can be treated as an independent phase in dehydroxylation reactions.  相似文献   
42.
Dynamic stress variations due to shear faults in a plane-layered medium   总被引:11,自引:0,他引:11  
A complete set of expressions is presented for the computation of elastic dynamic stress in plane-layered media. We use a discrete-wavenumber reflectivity method to compute the stress field radiated by arbitrary moment-tensor sources. The expressions derived here represent an interesting tool for both-the observational and theoretical analysis of dynamic stress changes associated with earthquake phenomena. Dynamic stress changes associated with a strike-slip fault having unilateral rupture are shown. This modelling, which is similar to the 1992 Landers California earthquake, illustrates the effects of distance, directivity and depth on transient stress changes.  相似文献   
43.
In EGS projects, fault zones are considered as the structures controlling deep flow at the reservoir scale. Using a large set of petrophysical properties (porosity, density, permeability, thermal conductivity [TC]) measured on cores collected along the EPS-1 borehole, a model of fault zone is proposed to describe them. A fault zone is a complex structure, showing different parts with different kinds of deformations and/or materials that could explain chemical and physical processes observed during fluid-rock interactions. The different parts composing the fault zone are: (1) the fault core or gauge zone; (2) the damage zone; (3) and the protolith. They are usually heterogeneous and show different physical properties. The damage zone is a potential high permeability channel and could become the main pathway for fluids if secondary minerals seal the fault core. Porosity is the lowest within the protolith, between 0.5 and 1%, but can go up to 15% in the fault zone. Permeability ranges from 10?20 m2 in the fresh granite to, at least, 10?15 m2 in the fault core, and TC ranges from 2.5 W K?1m?1 to 3.7 W K?1m?1. Finally, variations in specific surface are set over two orders of magnitude. If the lowest values usually characterize the fresh granite far from fault zones, physical properties could show variations spread over their whole respective ranges within these fault zones.  相似文献   
44.
This paper investigates the denudation rates in the Quadrilátero Ferrífero, Minas Gerais State (Brazil). The aim is to compare chemical weathering rates from measurements of solute fluxes in rivers and long-term mean erosion rates deduced from in situ-produced cosmogenic 10Be concentrations measured in fluvial sediments. Both water samples and sediments were collected in fifteen stations (checkpoints) located in four hydrographic basins with low anthropogenic perturbations.Depending of the type of substratum, three degrees of chemical denudation rates from water samples are observed: (i) high rates in marbles; (ii) medium rates in schists, phyllites, granites, gneisses and migmatites; (iii) low rates in quartzites and itabirites. Preliminary results of long-term erosion rates deduced from in situ-produced 10Be are comparable with those of chemical rates.  相似文献   
45.
In a high-resolution small-scale seismic experiment we investigated the shallow structure of the Wadi Araba fault (WAF), the principal fault strand of the Dead Sea Transform System between the Gulf of Aqaba/Eilat and the Dead Sea. The experiment consisted of 8 sub-parallel 1 km long seismic lines crossing the WAF. The recording station spacing was 5 m and the source point distance was 20 m. The first break tomography yields insight into the fault structure down to a depth of about 200 m. The velocity structure varies from one section to the other which were 1 to 2 km apart, but destinct velocity variations along the fault are visible between several profiles. The reflection seismic images show positive flower structures and indications for different sedimentary layers at the two sides of the main fault. Often the superficial sedimentary layers are bent upward close to the WAF. Our results indicate that this section of the fault (at shallow depths) is characterized by a transpressional regime. We detected a 100 to 300 m wide heterogeneous zone of deformed and displaced material which, however, is not characterized by low seismic velocities at a larger scale. At greater depth the geophysical images indicate a blocked cross-fault structure. The structure revealed, fault cores not wider than 10 m, are consistent with scaling from wear mechanics and with the low loading to healing ratio anticipated for the fault.  相似文献   
46.
Résumé

Une analyse de séries sédimentaires d’âge Crétacé supérieur dans le Sud-Est de la France a été entreprise et intégrée dans un cadre de stratigraphie séquentielle. Les limites Cénomanien–Turonien et la limite Turonien–Coniacien sont marquées par des variations rapides et de fortes amplitudes du niveau marin relatif. La comparaison effectuée avec d’autres bassins mondiaux nous amène à envisager le problème dans un cadre global. On constate : (1) le synchronisme d’événements à haute fréquence dans des contextes géodynamiques différents. (2) les effets de la superposition de cycles eustatiques hiérarchiquement différents, c’est-à-dire la superposition d’oscillations à haute fréquence sur une composante de 3e ordre. Ces observations sont confrontées à deux hypothèses : le glacio-eustatisme et la tectonique à haute fréquence. © Elsevier, Paris.  相似文献   
47.
Super-ensemble techniques: Application to surface drift prediction   总被引:3,自引:0,他引:3  
The prediction of surface drift of floating objects is an important task, with applications such as marine transport, pollutant dispersion, and search-and-rescue activities. But forecasting even the drift of surface waters is very challenging, because it depends on complex interactions of currents driven by the wind, the wave field and the general prevailing circulation. Furthermore, although each of those can be forecasted by deterministic models, the latter all suffer from limitations, resulting in imperfect predictions. In the present study, we try and predict the drift of two buoys launched during the DART06 (Dynamics of the Adriatic sea in Real-Time 2006) and MREA07 (Maritime Rapid Environmental Assessment 2007) sea trials, using the so-called hyper-ensemble technique: different models are combined in order to minimize departure from independent observations during a training period; the obtained combination is then used in forecasting mode. We review and try out different hyper-ensemble techniques, such as the simple ensemble mean, least-squares weighted linear combinations, and techniques based on data assimilation, which dynamically update the model’s weights in the combination when new observations become available. We show that the latter methods alleviate the need of fixing the training length a priori, as older information is automatically discarded.When the forecast period is relatively short (12 h), the discussed methods lead to much smaller forecasting errors compared with individual models (at least three times smaller), with the dynamic methods leading to the best results. When many models are available, errors can be further reduced by removing colinearities between them by performing a principal component analysis. At the same time, this reduces the amount of weights to be determined.In complex environments when meso- and smaller scale eddy activity is strong, such as the Ligurian Sea, the skill of individual models may vary over time periods smaller than the forecasting period (e.g. when the latter is 36 h). In these cases, a simpler method such as a fixed linear combination or a simple ensemble mean may lead to the smallest forecast errors. In environments where surface currents have strong mean-kinetic energies (e.g. the Western Adriatic Current), dynamic methods can be particularly successful in predicting the drift of surface waters. In any case, the dynamic hyper-ensemble methods allow to estimate a characteristic time during which the model weights are more or less stable, which allows predicting how long the obtained combination will be valid in forecasting mode, and hence to choose which hyper-ensemble method one should use.  相似文献   
48.
The interannual variability of African Easterly Waves (AEWs) is assessed with the help of spatio-temporal spectral analysis (STSA) and complex empirical orthogonal functions methods applied to the results of ten-member multiyear ensemble simulations. Two sets of experiments were conducted with the Météo-France ARPEGE-Climat GCM, one with interactive soil moisture (control), and the other with soil moisture relaxed towards climatological monthly means calculated from the control. Composites of Soudano–Sahelian AEWs were constructed and associated physical processes and dynamics were studied in the frame of the waves. It is shown that the model is able to simulate realistically some interannual variability in the AEWs, and that this dynamical aspect of the West African climate is potentially predictable (i.e. signal can be extracted from boundary conditions relatively to internal error of the GCM), especially along the moist Guinean coast. Compared with ECMWF 15-year reanalysis (ERA15), the maximum activity of AEWs is located too far to the South and is somewhat too zonal, but the main characteristics of the waves are well represented. The major impact of soil moisture relaxation in the GCM experiments is to reduce the seasonal potential predictability of AEWs over land by enhancing their internal variability.  相似文献   
49.
Large instrumental mass fractionation (IMF) may occur during measurements of oxygen isotope ratios by SIMS. Part of this fractionation depends on crystal structure and mineral composition. In order to improve the accuracy of SIMS measurements, we gathered 6 commonly used garnet standards and prepared 6 others to adequately cover the composition range Alm0-73, Prp0-99, Grs0-20. Electron microprobe analyses were performed at UBP-Clermont to check the chemical homogeneity of these standards. Oxygen isotope compositions were determined by laser fluorination and mass spectrometry at UW-Madison. Ten SIMS sessions and 336 δ18O measurements at CRPG-Nancy, on a Cameca IMS1270 instrument, demonstrate that the standards are homogeneous with external reproducibility of 0.3‰ (1σ). In terms of δ18O, SIMS measurements indicate that, during a single session, IMF can vary up to 6.3‰ from one garnet standard to another. In most of the sessions, IMF can be correlated with the grossular content. However, for a satisfactory correction scheme, we suggest the combination of the 3 main components (Ca, Fe, Mg). This is done using a simple least square calculation routine. The correction coefficients determined for each session can be used to calculate the IMF and correct the measured isotopic ratio of a garnet of known chemical composition. This way, we were able to reproduce the δ18O values of most of the Fe-Mg-Ca garnet standards within ± 0.6‰. Interestingly, the use of only 3 end-member standards (AlmCMG, PrpMM, GrsSE) plus a standard of intermediate composition (e.g. UWG-2) is sufficient to reproduce δ18O within the same precision. Thus, linear interpolation among end-member standards is satisfactory in the case of the garnet solid-solutions. Two studies carried out on zoned garnets from the Alps and the Pyrenees indicate that matrix effects become significant when variations in grossular contents are important (> 10%). In order to obtain reliable isotope ratio measurements on Fe-Mg-Ca garnets using a SIMS, we suggest a correction scheme using at least 3 reliable end-member standards plus a standard of intermediate composition (a garnet standard closest to the average composition of the analysed garnet). This allows cross-checking and incorporates a correction based on the variations in composition of zoned crystals.  相似文献   
50.
Suburban areas are subject to strong anthropogenic modifications, which can influence hydrological processes. Sewer systems, ditches, sewer overflow devices and retention basins are introduced and large surface areas are sealed off. The knowledge of accurate flow paths and watershed boundaries in these suburban areas is important for storm water management, hydrological modelling and hydrological data analysis. This study proposes a new method for the determination of the drainage network based on time efficient field investigations and integration of sewer system maps into the drainage network for small catchments of up to 10 km2. A new method is also proposed for the delineation of subcatchments and thus the catchment area. The subcatchments are delineated using a combination of an object‐oriented approach in the urban zone and geographical information system–based terrain analysis with flow direction forcing in the rural zone. The method is applied to the Chaudanne catchment, which belongs to the Yzeron river network and is located in the suburban area of Lyon, France. The resulting subcatchment map gives information about subcatchment response and contribution. The method is compared with six other automatic catchment delineation methods based on stream burning, flow direction forcing and calculation of subcatchments for inlet points. None of the automatic methods could correctly represent the catchment area and flow paths observed in the field. The watershed area calculated with these methods differs by as much as 25% from the area computed with the new method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号