首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   1篇
地球科学   154篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   10篇
  2017年   5篇
  2016年   9篇
  2015年   6篇
  2014年   6篇
  2013年   9篇
  2012年   8篇
  2011年   5篇
  2010年   7篇
  2009年   8篇
  2008年   9篇
  2007年   11篇
  2006年   15篇
  2005年   7篇
  2004年   5篇
  2003年   8篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
排序方式: 共有154条查询结果,搜索用时 0 毫秒
151.
The Middle Permian to Lower Triassic Buday’ah section, exposed in the Oman Mountains, is the first deep-sea section to be described in the Neotethys. The oceanic sediments were deposited along the southern Tethys margin in the newly formed Hawasina Basin. It is one of the few places where true Tethyan Permian radiolarites are exposed that allow the documentation of CCD evolution through time. The succession begins as oceanic crust pillow basalt with red ammonoid-rich pelagic limestone occurring both above and within inter-pillow cavities; the new occurrence of Clarkina postbitteri hongshuiensis indicates a late Capitanian age for the carbonate. The sharp change to overlying late Capitanian to Changhsingian radiolarite reflects rapid subsidence about 10 Myrs after initial continental breakup that resulted in the formation of the Neotethys Ocean. New conodonts indicate that the Permian-Triassic boundary succession occurs in the first platy lime mudstone beds above a Changhsingian siliceous to calcareous shale unit. The platy lime mudstone beds include an Upper Griesbachian bloom of calcite filled spheres (radiolarians?) that marks a potential world-wide event. New conodonts indicate an early Olenekian age for overlying grey papery limestone that are devoid of both macrofossils and trace fossils indicating that recovery from the Late Permian extinction has not yet progressed within this deep-water environment.δ13Corg, isotope values have not been disturbed and they show a negative shift just below the Permian-Triassic transition and a second one at the parvus zone level above. The Buday’ah succession may represent the most distal and probably deepest Permian and Lower Triassic depositional sequence within the basin.  相似文献   
152.
The Alban Hills volcanic region (20 km south of Rome, in the Roman Province) emitted a large volume of potassic magmas (> 280 km3) during the Quaternary. Chemical interactions between ascending magmas and the ∼ 7000–8000-m-thick sedimentary carbonate basement are documented by abundant high temperature skarn xenoliths in the eruptive products and have been frequently corroborated by geochemical surveys. In this paper we characterize the effect of carbonate assimilation on phase relationships at 200 MPa and 1150–1050 °C by experimental petrology. Calcite and dolomite addition promotes the crystallization of Ca-rich pyroxene and Mg-rich olivine respectively, and addition of both carbonates results in the desilication of the melt. Furthermore, carbonate assimilation liberates a large quantity of CO2-rich fluid. A comparison of experimental versus natural mineral, glass and bulk rock compositions suggests large variations in the degree of carbonate assimilation for the different Alban Hills eruptions. A maximum of 15 wt.% assimilation is suggested by some melt inclusion and clinopyroxene compositions; however, most of the natural data indicate assimilation of between 3 and 12 wt.% carbonate. Current high CO2 emissions in this area most likely indicate that such an assimilation process still occurs at depth. We calculate that a magma intruding into the carbonate basement with a rate of ∼ 1 – 2 · 106 m3/year, estimated by geophysical studies, and assimilating 3–12 wt.% of host rocks would release an amount of CO2 matching the current yearly emissions at the Alban Hills. Our results strongly suggest that current CO2 emissions in this region are the shallow manifestation of hot mafic magma intrusion in the carbonate-hosted reservoir at 5–6 km depth, with important consequences for the present-day volcanic hazard evaluation in this densely populated and historical area.  相似文献   
153.
The graphitization of carbonaceous material (CM) in a high-pressure metamorphic gradient is characterized along a cross section in the Schistes Lustrés formation, Western Alps. Along this 25-km cross section, both the CM precursor and the host-rock lithology are homogeneous, and the prograde evolution of the pressure-temperature metamorphic conditions from the lower blueschist-facies (13 kbar, 330 °C) to the eclogite-facies (20 kbar, 500 °C) is tightly constrained by literature data. Raman microspectroscopy shows that at the micrometre scale, this process is progressive and continuous with increasing metamorphic grade, and that the structure of CM is very sensitive to temperature variations. At the nanometre scale (HRTEM), the CM is composed of a mixture of a microporous phase and an onion-ring like phase, both known as non-graphitizing under the effect of temperature at ambient pressure. The HP-LT graphitization produces structurally and microtexturally heterogeneous CM. With increasing metamorphic grade, the graphitization of the two types of CM proceeds up to the triperiodic graphite stage because of microtextural and structural changes that are specific to each type of CM. The microporous material is progressively transformed into graphite through a macroporous transitional stage. In this case, graphitization mainly occurs on the pore walls as a result of pore growth. In the case of concentric onion-ring like material, graphitization occurs in the regions with the largest radius of curvature, i.e. on the outer part of the ring. In comparison with 1-bar experiments, pressure seems to induce microtextural changes, which allows the subsequent structural modifications of the starting material.  相似文献   
154.
New fossil remains of the proboscidean genus Anancus are described. Among them, a complete skull allows us to revisit for the first time the entire Chadian Anancus fossil record. This genus occurred in the Old World from the late Miocene up to the early Pleistocene. The analysis of dental and cranial characters was allowed individual variations from specific characters to be distinguished. In this study we show that Anancus kenyensis and Anancus osiris are very likely synonym taxa which leads us to emend the diagnosis of A. kenyensis. In addition, this study shows that dental characters in anancines lineage are of little significance for biostratigraphical inference, by contrast to previous works. This study brings new data about the phylogenetical and palaeobiogeographical history of the African anancines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号