首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   0篇
工业技术   84篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   8篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   1篇
  2011年   3篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1998年   2篇
  1997年   3篇
  1992年   1篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1966年   2篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
31.
The main physicochemical characteristics of complex boron-containing ferroalloys are studied. The methods of their production are briefly described, and the advantages of their application to boron microalloying of steel are demonstrated.  相似文献   
32.
Thin films of hafnium dioxide (HfO2) have been obtained by pulsed laser ablation of hafnium targets in oxygen atmosphere and characterized by transmission electron microscopy and electron diffraction. Conditions ensuring the formation of an amorphous phase, tetragonal and monoclinic modifications of HfO2 have been determined. It is established that the crystalline phase is formed on orienting substrates at lower temperatures than on neutral ones. The phenomenon of epitaxy has been observed for tetragonal modification of HfO2. Annealing in air leads to crystallization of an initially amorphous film with the formation of a monoclinic HfO2 modification.  相似文献   
33.
34.
35.
36.
37.
38.
In thermodynamic modeling of the desulfurization of steel by CaO–SiO2–MgO–Al2O3–B2O3 slag on the basis of HSC 6.12 Chemistry software (Outokumpu), the influence of the temperature (1500–1700°C), the slag basicity (2–5), and the B2O3 content (1–4%)1 on the desulfurization is analyzed. It is found that the sulfur content is reduced with increase in the temperature from 1500 to 1700°C, within the given range of slag basicity. At 1600°C, the sulfur content in the metal is 0.0052% for slag of basicity 2; at 1650°C, by contrast, its content is 0.0048%. Increase in slag basicity from 2 to 5 improves the desulfurization, which increases from 80.7 to 98.7% at 1600°C. If the B2O3 content in the slag rises, desulfurization is impaired. At 1600°C, the sulfur content in the metal may be reduced to 0.0052 and 0.0098% when using slag of basicity 2 with 1 and 4% B2O3, respectively; in the same conditions but with slag of basicity 5, the corresponding values are 0.00036 and 0.00088%, respectively. Note that desulfurization is better for slag without B2O3. According to thermodynamic modeling, metal with 0.0039 and 0.00019% S is obtained at 1600°C when using slag of basicity 2 and 5, respectively, that contains no B2O3. The results obtained by thermodynamic modeling for the desulfurization of metal by CaO–SiO2–MgO–Al2O3–B2O3 slag of basicity 2–5 in the range 1500–1700°C are consistent with experimental data and may be used in improving the desulfurization of steel by slag that contains boron.  相似文献   
39.
The expediency of producing and using complex ferroalloys in steelmaking is analyzed in terms the manufacturing technology, the raw materials employed, and the interactions of the ferroalloys with the molten steel. The need to produce complex ferroalloys with boron is established. The fundamental principles for determining the best composition of such alloys are presented. The basic compositions of complex ferroalloys with boron (ferrosilicomanganese with boron, ferrosilicon with boron, ferrosilicomanganese with boron and chromium) are established by studying the physicochemical properties of alloys and their interactions with the steel melt. If the characteristics (melting point, density, melting time of the ferroalloy in liquid steel, etc.) of complex ferroalloys with boron are compared with those of ferroboron, which is widely used, the complex alloys have clear benefits. The composition of the complex ferroalloys with boron includes active elements (Si, Al, Ti) facilitating the binding of oxygen and nitrogen from the steel melt in strong compounds and hence preventing their reaction with boron. The recommended boron content in the ferroalloy is 0.7–2%. That permits increase in the quantity of complex ferroalloys with boron in the steel and hence increase in the reliability and stability of boron assimilation. At elevated temperatures (1430–1570°C), the oxidation of ferrosilicoboron is 4–7 times less than that of ferroboron. Data are presented regarding the industrial production and use of ferrosilicoboron in the steel-smelting shop. The boron assimilation from complex alloys in microalloying of the steel is studied. The use of ferrosilicoboron does not require significant changes in the existing system for reduction by ferrosilicon; the boron assimilation is 77.8–96.3% (mean 86.6%). With a boron concentration of 0.0021–0.0027% in the steel during ladle treatment, its content in the cast metal will be no less than 0.0020%. If boron is introduced in steel by means of ferrosilicomanganese with boron, the boron assimilation is increased by a factor of 1.6 (from 48 to 77%, on average) in comparison with the use of ferroboron.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号