首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13385篇
  免费   990篇
  国内免费   30篇
工业技术   14405篇
  2023年   129篇
  2022年   229篇
  2021年   366篇
  2020年   256篇
  2019年   317篇
  2018年   384篇
  2017年   420篇
  2016年   499篇
  2015年   430篇
  2014年   579篇
  2013年   916篇
  2012年   808篇
  2011年   1006篇
  2010年   719篇
  2009年   680篇
  2008年   667篇
  2007年   502篇
  2006年   411篇
  2005年   381篇
  2004年   367篇
  2003年   357篇
  2002年   301篇
  2001年   245篇
  2000年   234篇
  1999年   249篇
  1998年   519篇
  1997年   364篇
  1996年   239篇
  1995年   179篇
  1994年   173篇
  1993年   178篇
  1992年   120篇
  1991年   100篇
  1990年   95篇
  1989年   96篇
  1988年   61篇
  1987年   56篇
  1986年   59篇
  1985年   77篇
  1984年   68篇
  1983年   44篇
  1982年   42篇
  1981年   43篇
  1980年   41篇
  1979年   39篇
  1978年   32篇
  1977年   52篇
  1976年   78篇
  1975年   40篇
  1973年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
A crystallization monitoring system using a quartz crystal oscillator was utilized to predict different shapes of crystal formation by measuring crystal growth rate and to measure supersaturation. Applying different rates of cooling, crystal formation of different shapes was induced, and the frequency variation of the oscillator and the crystal shape observed with an SEM were compared to determine how the frequency variation can be interpreted for the prediction of produced crystal shape. The experimental results obtained from the crystallization of potassium nitrate and cupric sulfate solutions showed that the proposed frequency measurement technique could be applied in the prediction of crystal shape of cooling crystallization processes. In addition, supersaturation was determined from the measurements of solution and coolant temperatures.  相似文献   
142.
The adsorption of aroma chemicals on cotton fabric was studied relative to the surfactant concentration, surfactant type, water solubility, and fiber morphology. The adsorption increased with increasing surfactant concentration to a maximum near the critical micelle concentration, then decreased with further increases in surfactant concentration. The adsorption also was found to be highly dependent on the fiber surface area and pore structure; dramatic differences were observed between untreated and mercerized cotton fabric and are believed to be due to morphological differences. Cationic and anionic surfactants increased the aroma chemical adsorption, which varied with surfactant type, with cetyltrimethylammonium chloride (CTAC)>sodium dodecyl sulfate (SDS)>H2O. Water solubility also influenced adsorption; in most cases, adsorption increased with water solubility. In addition, adsorption was also influenced by chemical structure and hydrophobic interactions. The adsorption of aroma chemicals on cotton fabric can be attributed to the aqueous solution being physically held in capillaries and pore structures within the fibular structure of cotton fiber and also to molecular interactions among the aroma chemical molecules, surfactants, and cotton substrate.  相似文献   
143.
This study aims the evaluation of the corrosion of steel bar embedded in antiwashout underwater concrete, which has rather been neglected to date. To that goal, accelerated steel bar corrosion tests have been performed for three series of steel bar-reinforced antiwashout underwater concrete specimens manufactured with different admixtures and under different environments. The three series of antiwashout underwater concrete were: concrete constituted exclusively by ordinary portland cement (OPC), concrete composed by ordinary portland cement mixed with fly-ash in 20% ratio (FA20) and concrete with ground granulated blast furnace slag is mixed in 50% ratio (BFS50). And, the three different environments were: manufacture in the air, in tap water, and in artificial seawater.Measurement results using half-cell potential surveyor showed that, among all the specimens, steel bar in OPC manufactured in artificial seawater was the first one that exceeded the threshold value proposed by ASTM C 876 with a potential value below − 350 mV after 14 cycles. And, the corresponding corrosion current density and concentration of water soluble chloride were measured as 0.3 μA/cm2 and 0.258%. On the other hand, for the other specimens that are FA20 and BFS50, potential values below − 350 mV were observed later at 18 and 20 cycles, respectively.Results confirmed the expectation that mineral admixtures may be more effective in delaying the development of steel bar corrosion in antiwashout underwater concrete.  相似文献   
144.
The block copolymer of poly(1‐hexadecene) (PHD) and polypropylene (PP) was effectively synthesized by the sequential polymerization of propylene and 1‐hexadecene by using highly isospecific TiCl3/Cp2Ti(CH3)2 (Cp = cyclopentadienyl). The block copolymers had two separate melting temperatures of constituent blocks. The modulus of PHD–PP block copolymer was enhanced as the content of sequentially polymerized PP block was increased. The elongation at break showed positive deviation at the intermediate compositions from the simple additive values of constituent homopolymers. Shape memory effect which utilizes the crystalline PHD block as a reversible phase and the crystalline PP block as a fixed structure was examined. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1709–1715, 2002; DOI 10.1002/app.10551  相似文献   
145.
Park  Jong Soo  Doh  Dong Sup  Lee  Kwan‐Young 《Topics in Catalysis》2000,10(1-2):127-131
PdOx/MnO2 has been examined as a catalyst for CO oxidation using a conventional flow reactor at reaction temperatures between 50 and 150°C. In the reaction conditions of GHSV (gashourlyspacevelocity) of 1.22 × 105/h and CO concentration of 2000 ppm, PdOx/MnO2 showed higher catalytic activity compared with PdOx/Mn2O3, which had been previously reported as an effective catalyst due to the cooperative action of Pd and Mn2O3 for this reaction. The reason for higher activity of PdOx/MnO2 than PdOx/Mn2O3 has been investigated using TPR (temperatureprogrammed reduction) and XPS studies. TPR showed that PdOx/MnO2 could be reduced by CO at much lower temperature than PdOx/Mn2O3. During the experiment of reduction and oxidation, XPS showed that the valence of Mn in the PdOx/MnO2 was between 4+ and 3+, which is higher than that of Mn in the PdOx/Mn2O3 catalyst of which the valence has been reported to be between 3+ and 2+. It is known that in this catalyst system the support supplies oxygen onto Pd, where the oxidation occurs with adsorbed CO, and the ability of the support to provide oxygen improves the performance of the catalyst. Therefore, it was concluded that the readiness of MnO2 to be reduced with maintaining a higher oxidation state showed higher CO oxidation activity than Mn2O3 as support for PdOx.  相似文献   
146.
We undertook numerical and experimental studies to develop a better incineration method for the destruction of CC14. A phenomenological model for the turbulent reaction of CC14, including a flame inhibition feature, has been successfully incorporated into a commercial code, simulating the incineration processes of this compound. The gaseous flow solution was obtained using SIMPLEST, a derivative of Patankar’s SIMPLE algorithm, with a k-ε turbulence model. A modified fast chemistry turbulent reaction model was developed to describe the flame inhibition due to the presence of CC14, considering the corresponding burning velocity data of these mixtures. An experiment was carried out on a 5.2 kW laboratory scale, transportable, cavity-type incinerator, which warrants a sufficient residence time and effective turbulent mixing by the formation of a strong recirculation region in a combustor. To this end, the specific configuration of the incinerator was manufactured to consist of two opposing jets and a rearward facing step. The calculated data were in close agreement with the experimental data for the concentrations of major species, such as CCI4 and HCl, together with the temperature profiles. The experimental test gave the desired DRE of above 99.99%.  相似文献   
147.
The thermal and mechanical properties of polyurethane‐infiltrated carbon foam of various densities were investigated. By combining the high thermal conductivity of the carbon foam with the mechanical toughness of the pure polyurethane, a mechanically tough composite (relative to the unfilled foam) that could be used at higher temperatures than the polyurethane's degradation was formed. Both the tensile strength and the modulus increased by an order of magnitude for the composites compared to unfilled foam, while the compressive and shear strengths and moduli of the composites approached values exhibited by pure polyurethane. At both 300 and 400°C, the rectangular blocks of pure polyurethane lost their mechanical integrity due to decomposition in air. Thermogravimetric analysis confirms substantial initial weight loss above 290°C. Filled carbon foam blocks, however, maintain their mechanical integrity at both 300 and 400°C indefinitely, although the bulk of the rectangular block mass is polyurethane. Three different carbon foam densities are examined. As expected, the higher density foams show greater heat transfer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2348–2355, 2003  相似文献   
148.
Diblock copolymers with different poly(ε‐caprolactone) (PCL) block lengths were synthesized by ring‐opening polymerization of ε‐caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG‐OH, MW 2000) as initiator. The self‐aggregation behaviors and microscopic characteristics of the diblock copolymer self‐aggregates, prepared by the diafiltration method, were investigated by using 1H NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG–PCL block copolymers formed the self‐aggregate in an aqueous environment by intra‐ and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations of the block copolymer self‐aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The partition equilibrium constants (Kv) of pyrene, measured by fluorescence spectroscopy, revealed that the inner core hydrophobicity of the nanoparticles increased with increasing PCL chain length. The aggregation number of PCL chain per one hydrophobic microdomain, investigated by the fluorescence quenching method using cetylpyridinium chloride as a quencher, revealed that 4–20 block copolymer chains were needed to form a hydrophobic microdomain, depending on PCL block length. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3520–3527, 2006  相似文献   
149.
The glass transition temperatures (Tg) and specific heat increments (ΔCp) at Tg of S/AMS statistical copolymers having weight fractions AMS of 0.00, 0.09, 0.17, 0.26, 0.36, and 0.44 are (by DSC) 380.0 (0.280), 384.2 (0.275), 388.8 (0.284), 391.5 (0.275), 398.3 (0.272), and 405.9 (0.27) °K (J·g? ·deg?), respectively. The TgCp) for the PPO resin are 492.2 (0.221). The glass transitions of P(S/AMS) (1) + PPO resin (2) blends having w2 = 0.25, 0.50, and 0.75 were also measured. Examination of the copolymer and blend Tg vs. composition data indicates that a relation recently proposed by Couchman gives a somewhat better approximation than the simple Fox relation. However, the nonadjustable k = ΔCp2/ΔCp1 constant in the Couchman relation must be replaced by a smaller empirical k to give a true match of calculated to observed Tg.  相似文献   
150.
Catalytic performances of various metal molybdates were tested in the oxidative dehydrogenation of propane to propene with molecular oxygen under an atmospheric pressure. Most of the molybdates tested promoted the selective oxidative conversion of propane to propene and among them cobalt and magnesium molybdates were found highest in the activity and selectivity. It was also found that their catalytic activities were highly sensitive to the catalyst composition, and it turned out that Co0.95MoO x and Mg0.95MoO x catalysts which have slightly excess molybdenum showed the highest activity in the oxidative dehydrogenation of propane. Under the optimized reaction conditions, higher reaction temperatures and lower partial pressures of oxygen, these catalysts gave 60% selectivity to propene at 20% conversion of propane. Since the molybdates having the surface enriched with molybdenum oxide tended to show high activity for the propane oxidation, surface molybdenum oxide clusters supported on metal molybdate matrix seem to be the active sites for the selective oxidative dehydrogenation of propane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号