首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1191篇
  免费   38篇
  国内免费   6篇
工业技术   1235篇
  2023年   8篇
  2022年   32篇
  2021年   71篇
  2020年   15篇
  2019年   22篇
  2018年   24篇
  2017年   16篇
  2016年   47篇
  2015年   19篇
  2014年   47篇
  2013年   72篇
  2012年   54篇
  2011年   63篇
  2010年   39篇
  2009年   48篇
  2008年   44篇
  2007年   48篇
  2006年   33篇
  2005年   45篇
  2004年   36篇
  2003年   27篇
  2002年   32篇
  2001年   8篇
  2000年   22篇
  1999年   20篇
  1998年   67篇
  1997年   35篇
  1996年   17篇
  1995年   19篇
  1994年   22篇
  1993年   22篇
  1992年   12篇
  1991年   10篇
  1990年   10篇
  1989年   12篇
  1988年   16篇
  1987年   10篇
  1986年   10篇
  1985年   5篇
  1984年   7篇
  1983年   10篇
  1982年   6篇
  1981年   5篇
  1979年   8篇
  1978年   4篇
  1977年   7篇
  1976年   5篇
  1974年   3篇
  1973年   4篇
  1972年   5篇
排序方式: 共有1235条查询结果,搜索用时 31 毫秒
991.
Six previously constructed and nine newly constructed Aspergillusawamori glucoamylases with multiple mutations made by combiningexisting single mutations were tested for their ability to produceglucose from maltodextrins. Multiple mutations have cumulativeeffects on glucose yield, specific activity and thermostability.No general correlation between glucose yield and thermostabilitywas observed, although mutations that presumably impede unfoldingat high temperatures uniformly increase thermostability andgenerally increase glucose yield. Peak glucose yields decreasewith increasing temperature. The best combination of high glucoseyield, high specific activity and high thermostability occursin Asn20Cys/Ala27Cys/Ser30Pro/Gly137Ala glucoamylase.  相似文献   
992.
The growth of Arthrospira platensis and physiological changes in biomass under the effects of six rare earth elements Dy, Sm, Tb, La, Nd and Yb were evaluated. Elements were tested by three concentrations of 10, 20 and 30 mg/L. According to neutron activation analysis data A. platensis's accumulation capacity toward studied elements changes in the following order of La > Dy > Nd > Sm > Yb > Tb. The results show that Dy and La ions stimulate biomass growth and Yb ions inhibit it, while Sm, Tb and Nd ions do not affect biomass accumulation. The contents of proteins and chlorophyll a are not affected by the presence of rare earth elements in the cultivation medium. Studied elements affect to different extents carbohydrates, phycobilins, β-carotene, lipids and MDA contents in spirulina biomass. Changes in the antioxidant activity under applied metal loads reveal a moderate stress in exposed A. platensis. Cyanobacterium A. platensis can be successfully used for bioremediation of natural water contaminated with REEs as well as REEs recovery from low polluted industrial effluents.  相似文献   
993.
Sulfur-containing groups preorganized on macrocyclic scaffolds are well suited for liquid-phase complexation of soft metal ions; however, their binding potential was not extensively studied at the air–water interface, and the effect of thioether topology on metal ion binding mechanisms under various conditions was not considered. Herein, we report the interface receptor characteristics of topologically varied thiacalixarene thioethers (linear bis-(methylthio)ethoxy derivative L2, O2S2-thiacrown-ether L3, and O2S2-bridged thiacalixtube L4). The study was conducted in bulk liquid phase and Langmuir monolayers. For all compounds, the highest liquid-phase extraction selectivity was revealed for Ag+ and Hg2+ ions vs. other soft metal ions. In thioether L2 and thiacalixtube L4, metal ion binding was evidenced by a blue shift of the band at 303 nm (for Ag+ species) and the appearance of ligand-to-metal charge transfer bands at 330–340 nm (for Hg2+ species). Theoretical calculations for thioether L2 and its Ag and Hg complexes are consistent with experimental data of UV/Vis, nuclear magnetic resonance (NMR) spectroscopy, and single-crystal X-ray diffractometry of Ag–thioether L2 complexes and Hg–thiacalixtube L4 complex for the case of coordination around the metal center involving two alkyl sulfide groups (Hg2+) or sulfur atoms on the lower rim and bridging unit (Ag+). In thiacrown L3, Ag and Hg binding by alkyl sulfide groups was suggested from changes in NMR spectra upon the addition of corresponding salts. In spite of the low ability of the thioethers to form stable Langmuir monolayers on deionized water, one might argue that the monolayers significantly expand in the presence of Hg salts in the water subphase. Hg2+ ion uptake by the Langmuir–Blodgett (LB) films of ligand L3 was proved by X-ray photoelectron spectroscopy (XPS). Together, these results demonstrate the potential of sulfide groups on the calixarene platform as receptor unit towards Hg2+ ions, which could be useful in the development of Hg2+-selective water purification systems or thin-film sensor devices.  相似文献   
994.
Multiple studies have demonstrated that various nanoparticles (NPs) stimulate osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibit adipogenic ones. The mechanisms of these effects are not determined. The aim of this paper was to estimate Wharton’s Jelly MSCs phenotype and humoral factor production during tri-lineage differentiation per se and in the presence of silicon–gold NPs. Silicon (SiNPs), gold (AuNPs), and 10% Au-doped Si nanoparticles (SiAuNPs) were synthesized by laser ablation, characterized, and studied in MSC cultures before and during differentiation. Humoral factor production (n = 41) was analyzed by Luminex technology. NPs were nontoxic, did not induce ROS production, and stimulated G-CSF, GM-CSF, VEGF, CXCL1 (GRO) production in four day MSC cultures. During MSC differentiation, all NPs stimulated CD13 and CD90 expression in osteogenic cultures. MSC differentiation resulted in a decrease in multiple humoral factor production to day 14 of incubation. NPs did not significantly affect the production in chondrogenic cultures and stimulated it in both osteogenic and adipogenic ones. The major difference in the protein production between osteogenic and adipogenic MSC cultures in the presence of NPs was VEGF level, which was unaffected in osteogenic cells and 4–9 times increased in adipogenic ones. The effects of NPs decreased in a row AuNPs > SiAuNPs > SiNPs. Taken collectively, high expression of CD13 and CD90 by MSCs and critical level of VEGF production can, at least, partially explain the stimulatory effect of NPs on MSC osteogenic differentiation.  相似文献   
995.
With the growing problem of the emergence of antibiotic-resistant bacteria, the search for alternative ways to combat bacterial infections is extremely urgent. While analyzing the effect of antimicrobial peptides (AMPs) on immunocompetent cells, their effect on all parts of the immune system, and on humoral and cellular immunity, is revealed. AMPs have direct effects on neutrophils, monocytes, dendritic cells, T-lymphocytes, and mast cells, participating in innate immunity. They act on B-lymphocytes indirectly, enhancing the induction of antigen-specific immunity, which ultimately leads to the activation of adaptive immunity. The adjuvant activity of AMPs in relation to bacterial and viral antigens was the reason for their inclusion in vaccines and made it possible to formulate the concept of a “defensin vaccine” as an innovative basis for constructing vaccines. The immunomodulatory function of AMPs involves their influence on cells in the nearest microenvironment, recruitment and activation of other cells, supporting the response to pathogenic microorganisms and completing the inflammatory process, thus exhibiting a systemic effect. For the successful use of AMPs in medical practice, it is necessary to study their immunomodulatory activity in detail, taking into account their pleiotropy. The degree of maturity of the immune system and microenvironment can contribute to the prevention of complications and increase the effectiveness of therapy, since AMPs can suppress inflammation in some circumstances, but aggravate the response and damage of organism in others. It should also be taken into account that the real functions of one or another AMP depend on the types of total regulatory effects on the target cell, and not only on properties of an individual peptide. A wide spectrum of biological activity, including direct effects on pathogens, inactivation of bacterial toxins and influence on immunocompetent cells, has attracted the attention of researchers, however, the cytostatic activity of AMPs against normal cells, as well as their allergenic properties and low stability to host proteases, are serious limitations for the medical use of AMPs. In this connection, the tasks of searching for compounds that selectively affect the target and development of an appropriate method of application become critically important. The scope of this review is to summarize the current concepts and newest advances in research of the immunomodulatory activity of natural and synthetic AMPs, and to examine the prospects and limitations of their medical use.  相似文献   
996.
Starch was isolated from green Cavendish bananas after sodium hydroxide treatment, and its physical properties as they affected its potential acceptance as a food ingredient were measured and compared with those of corn, waxy corn, waxy corn diphosphate, acetylated waxy corn diphosphate, potato, and tapioca starches. Banana starch granules had a moisture content of 15.5%, an amylose content of 19.5% on a dry weight basis, and were highly irregular in shape and size, with the mode of characteristic length falling at 15 μm. The gelatinization range was 70.1 °C to 74.6 °C. Scanning electron micrography showed that in water the granules underwent surface cracking at 65 °C and progressively greater swelling, deformation, and erosion between 70 °C and 90 °C. At 95 °C, 6% banana starch paste in a Brabender Amylograph had a viscosity four times that of corn starch paste of the same concentration, and viscosity decreased rather slowly with stirring. The paste was somewhat longer than that of corn starch, but appreciably shorter than tapioca starch paste. Gelled banana starch was nearly as strong as corn starch, and also was nearly as opaque and reflective.  相似文献   
997.
Glyoxal (GO) and methylglyoxal (MGO) are highly reactive species formed in carbohydrate metabolism. Nε-Carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) are considered to be the advanced glycation end-products (AGEs) of L-lysine (Lys) with GO and MGO, respectively. Here, we investigated the reaction of free L-lysine (Lys) with GO and MGO in phosphate buffer (pH 7.4) at 37 °C and 80 °C in detail in the absence of any other chemicals which are widely used to reduce Schiff bases. The concentrations of Lys, GO and MGO used in the experiments were 0.5, 2.5, 5.0, 7.5 and 10 mM. The reaction time ranged between 0 and 240 min. Experiments were performed in triplicate. The concentrations of remaining Lys and of CML and CEL formed in the reaction mixtures were measured by stable-isotope dilution gas chromatography-mass spectrometry (GC-MS). Our experiments showed that CML and CEL were formed at higher concentrations at 80 °C compared to 37 °C. CML was found to be the major reaction product. In mixtures of GO and MGO, MGO inhibited the formation of CML from Lys (5 mM) in a concentration-dependent manner. The highest CML concentration was about 300 µM corresponding to a reaction yield of 6% with respect to Lys. An addition of Lys to GO, MGO and their mixtures resulted in strong reversible decreases in the Lys concentration up to 50%. It is assumed that free Lys reacts rapidly with GO and MGO to form many not yet identified reaction products. Reaction mixtures of Lys and MGO were stronger colored than those of Lys and GO, notably at 80 °C, indicating higher reactivity of MGO towards Lys that leads to polymeric colored MGO species. We have a strong indication of the formation of Nε-(hydroxymethyl)-lysine (HML) as a novel reaction product of Lys methyl ester with MGO. A mechanism is proposed for the formation of HML from Lys and MGO. This mechanism may explain why Lys and GO do not react to form a related product. Preliminary analyses show that HML is formed at higher concentrations than CEL from Lys methyl ester and MGO. No Schiff bases or their hydroxylic precursors were identified as reaction products. In their reactions with Lys, GO and MGO are likely to act both as chemical oxidants on the terminal aldehyde group to a carboxylic group (i.e., R-CHO to R-COOH) and as chemical reductors on labile Schiff bases (R-CH=N-R to R-CH2-NH-R) presumably via disproportionation and hydride transfer. Our study shows that free non-proteinic Lys reacts with GO and MGO to form CML, CEL and HML in very low yield. Whether proteinic Lys also reacts with MGO to form HML residues in proteins remains to be investigated. The physiological occurrence and concentration of HML in biological fluids and tissues and its relation to CML and CEL are elusive and warrant further investigations in health and disease. Chemical synthesis and structural characterization of HML are expected to advance and accelerate the scientific research in this topic.  相似文献   
998.
This study evaluates the effects of five different peptides, the Epitalon® tetrapeptide, the Vilon® dipeptide, the Thymogen® dipeptide, the Thymalin® peptide complex, and the Chonluten® tripeptide, as regulators of inflammatory and proliferative processes in the human monocytic THP-1, which is a human leukemia monocytic cell line capable of differentiating into macrophages by PMA in vitro. These peptides (Khavinson Peptides®), characterized by Prof. Khavinson from 1973 onwards, were initially isolated from animal tissues and found to be organ specific. We tested the capacity of the five peptides to influence cell cultures in vitro by incubating THP-1 cells with peptides at certain concentrations known for being effective on recipient cells in culture. We found that all five peptides can modulate key proliferative patterns, increasing tyrosine phosphorylation of mitogen-activated cytoplasmic kinases. In addition, the Chonluten tripeptide, derived from bronchial epithelial cells, inhibited in vitro tumor necrosis factor (TNF) production of monocytes exposed to pro-inflammatory bacterial lipopolysaccharide (LPS). The low TNF release by monocytes is linked to a documented mechanism of TNF tolerance, promoting attenuation of inflammatory action. Therefore, all peptides inhibited the expression of TNF and pro-inflammatory IL-6 cytokine stimulated by LPS on terminally differentiated THP-1 cells. Lastly, by incubating the THP1 cells, treated with the peptides, on a layer of activated endothelial cells (HUVECs activated by LPS), we observed a reduction in cell adhesion, a typical pro-inflammatory mechanism. Overall, the results suggest that the Khavinson Peptides® cooperate as natural inducers of TNF tolerance in monocyte, and act on macrophages as anti-inflammatory molecules during inflammatory and microbial-mediated activity.  相似文献   
999.
The phenolic acids in whole hull-less seed, its skin and oil cake meal, dehulled kernel and hull of pumpkin (Cucurbita pepo) were separated into free, esterified and insoluble-bound forms, which were then identified and quantified by high-performance liquid chromatography with a photodiode array detector. In all samples, protocatechuic, p-hydroxybenzoic, vanillic, trans-p-coumaric, ferulic, trans-sinapic acids and p-hydroxybenzaldehyde were quantified. Caffeic acid was present in all samples except in hulls, while syringic acid was not detectable only in skin and oil cake meal. p-Hydroxybenzoic acid was the dominant phenolic compound in all investigated samples, with 34.7%, 52.0%, 51.4%, 67.4% and 51.8% found in hull-less seed, oil cake meal, skin, dehulled kernels and hulls, respectively, based on total phenolic acid content. Most phenolic acids were present in bound (esterified and insoluble) form, from 50.6% in skin to 84.1% in hull-less seed.  相似文献   
1000.
Overweight and obesity are global health problems that affect more than 1.9 billion adults who are overweight, and of these 600 million are obese. In the United States, these problems affect 60% of the population. Critical to these statistics is the association with increased risk of cardiovascular disease, type 2 diabetes, and metabolic syndrome among other noncommunicable diseases. Many factors, including sugars, have been charged as potential causes. However, obesity and overweight and their attendant health problems continue to increase despite the fact that there is a decline in the consumption of sugars. Sugars vary in their types and structure. From a food science perspective, sugars present an array of attributes that extend beyond taste, flavor, color, and texture to aspects such as structure and shelf‐life of foods. From a public health perspective, there is considerable controversy about the effect of sugar relative to satiety, digestion, and noncommunicable diseases. This comprehensive overview from experts in food science, nutrition and health, sensory science, and biochemistry describes the technical and functional roles of sugar in food production, provides a balanced evidence‐based assessment of the literature and addresses many prevalent health issues commonly ascribed to sugar by the media, consumer groups, international scientific organizations, and policy makers. The preponderance of the evidence indicates that sugar as such does not contribute to adverse health outcomes when consumed under isocaloric conditions. The evidence generally indicates, as noted by the 2010 Dietary Guidelines Advisory Committee, that sugar, like any other caloric macronutrient, such as protein and fat, when consumed in excess leads to conditions such as obesity and related comorbidities. More recently, the 2015‐2020 Dietary Guidelines for Americans recommended limiting dietary sugar to 10% of total energy in an effort to reduced the risk of these noncommunicable diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号