首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1357篇
  免费   62篇
工业技术   1419篇
  2023年   19篇
  2022年   42篇
  2021年   66篇
  2020年   36篇
  2019年   31篇
  2018年   41篇
  2017年   43篇
  2016年   54篇
  2015年   62篇
  2014年   56篇
  2013年   95篇
  2012年   80篇
  2011年   113篇
  2010年   74篇
  2009年   70篇
  2008年   90篇
  2007年   69篇
  2006年   63篇
  2005年   43篇
  2004年   32篇
  2003年   23篇
  2002年   22篇
  2001年   18篇
  2000年   15篇
  1999年   30篇
  1998年   20篇
  1997年   11篇
  1996年   4篇
  1995年   6篇
  1994年   13篇
  1993年   4篇
  1991年   3篇
  1990年   7篇
  1989年   3篇
  1988年   3篇
  1986年   4篇
  1985年   6篇
  1984年   3篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1958年   2篇
排序方式: 共有1419条查询结果,搜索用时 0 毫秒
51.
This research investigated the effect of different fractions of commercial wood flour (Type c100 from JRS, Germany) on mechanical and physical properties of wood-polymer composites (WPC). The fractions were named regarding the mean lengths of their particles in µm; 80, 130, 255, 405 and 485. The composite samples were manufactured with 30 wt% of wood flour fractions of all five groups as well as the not fractionated flour, and 70 wt% of cellulose propionate (CP). The melt mass-flow rate (MFR) of the different granules, tensile strength, and modulus of elasticity, flexural strength, flexural modulus and the impact strength of the injection molded specimens as well as the water uptake were determined in this study. WPCs with the specific size range used in this investigation exhibited improved strength and modulus of elasticity in tensile and flexural tests, compared to pure CP. Using fraction 255, the mechanical properties increased the most. Tensile strength rose by 28 and 13% compared to CP and to WPC with the not fractioned wood powder, respectively. Fraction 255 increased flexural strength by 33 and 5% compared to CP and WPC with the not fractioned flour. The MFR (tested at 190 °C with 7.16 kg) of WPC_255 is the lowest with 2.3 g/10 min. Composites with the smallest particles showed the least water uptake.  相似文献   
52.
53.
On the base of 2,2‐bis(azidomethyl)propane‐1,3‐diol (BAMP) and 2,2‐dinitropropane‐1,3‐diol (DNPD) four different polyurethanes were synthesized in a polyaddition reaction using hexamethylene diisocyanate (HMDI) and diisocyanato ethane (DIE). The obtained prepolymers were mainly characterized using vibrational spectroscopy (IR) and elemental analysis. For determination of low and high temperature behavior, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used. Investigations concerning friction and impact sensitivities were carried out using a BAM drop hammer and friction tester. The energetic properties of the polymers were determined using bomb calorimetric measurements and calculated with the EXPLO5 V6.02 computer code. The obtained values were compared with the glycidyl azide polymer (GAP). The compounds turned out to be insensitive toward friction (>360 N) and less sensitive toward impact (40 J). The good physical stabilities, along with their sufficient thermal stability (170–210 °C) and moderate energetic properties renders these polymers into potential compounds for applications as binders in energetic formul;ations. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43991.  相似文献   
54.
In the present work, the contact electrification of polymers that differ in adhesion strength is studied. Electrical current is measured along with adhesion in macroscale contacting‐separation experiments. Additionally, local adhesion and roughness are studied with atomic force microscopy to get deeper insight into relations between surface properties and electrification. Measurements reveal that higher surface charge is formed on more adhesive surfaces, thus confirming covalent bond cleavage as a mechanism for contact electrification of polymers. Investigated materials possess enhanced contact electrification making them attractive candidates for the conversion of mechanical energy to electrical in triboelectric nanogenerator devices.  相似文献   
55.
Herein, we report—for the first time—on the additive‐free bulk synthesis of Ti3SnC2. A detailed experimental study of the structure of the latter together with a secondary phase, Ti2SnC, is presented through the use of X‐ray diffraction (XRD), and high‐resolution transmission microscopy (HRTEM). A previous sample of Ti3SnC2, made using Fe as an additive and Ti2SnC as a secondary phase, was studied by high‐temperature neutron diffraction (HTND) and XRD. The room‐temperature crystallographic parameters of the two MAX phases in the two samples are quite similar. Based on Rietveld analysis of the HTND data, the average linear thermal expansion coefficients of Ti3SnC2 in the a and c directions were found to be 8.5 (2)·10?6 K?1 and 8.9 (1)·10?6 K?1, respectively. The respective values for the Ti2SnC phase are 10.1 (3)·10?6 K?1 and 10.8 (6)·10?6 K?1. Unlike other MAX phases, the atomic displacement parameters of the Sn atoms in Ti3SnC2 are comparable to those of the Ti and C atoms. When the predictions of the atomic displacement parameters obtained from density functional theory are compared to the experimental results, good quantitative agreement is found for the Sn atoms. In the case of the Ti and C atoms, the agreement is more qualitative. We also used first principles to calculate the elastic properties of both Ti2SnC and Ti3SnC2 and their Raman active modes. The latter are compared to experiment and the agreement was found to be good.  相似文献   
56.
The development of new hardmetal coating applications such as fatigue-loaded parts, structural components, and tools for metal forming is connected with improvement of their performance and reliability. For modelling purposes, the knowledge of thermophysical, mechanical, and other material data is required. However, this information is still missing today. In this study, the thermophysical data of a WC-17Co coating sprayed with a liquid-fuelled HVOF-process from a commercial agglomerated and sintered feedstock powder from room temperature up to 700 °C was determined as an example. The dependence of the heat conductivity on temperature was obtained through measurement of the coefficient of thermal expansion, the specific heat capacity, and the thermal diffusivity. Heat conductivities ranging from 29.2 W/(mK) at 50 °C to 35.4 W/(mK) at 700 °C were determined. All measurements were performed twice (as-sprayed and after the first thermal cycle) to take into account the structural and compositional changes. Extensive XRD and FESEM studies were performed to characterize the phase compositions and microstructures in the as-sprayed and heat-treated states. Bulk samples obtained by spark plasma sintering from the feedstock powder were studied for comparison.  相似文献   
57.
Particularly in fast rolling mills, conventional actuators reach their dynamic limits, when longitudinal thickness variations of the incoming strip shall be reduced with high accuracy by model-predictive roll gap control. Accordingly, the applicability of highly dynamic piezoelectric actuators in combination with electromechanical spindles and a high frequency precision measurement of the thickness in front of the roll gap was examined. Rolling tests in a cold rolling mill for narrow slit strips show that this novel concept is suitable to provide the required dynamic actuation especially at high rolling speed.  相似文献   
58.
Three commercial carbon black samples as well as self‐made C3H6 soot were investigated for their reactivity in the oxidation on an α‐Fe2O3 catalyst. These studies were performed by temperature programmed oxidation (TPO) using a packed bed. For reference purposes, TPO studies in the absence of the catalyst were made as well. The carbon black samples were characterized towards the content of C, H, N and O as well as higher heating value, specific surface area, moisture and volatile matter and were deemed to be suitable model substances for diesel soot of different maturity. The correlation of these physico‐chemical properties with the kinetics in catalytic TPO indicated that the soot oxidation on Fe2O3 is significantly affected by the initial number of surface oxygen compounds of the soot. The decomposition of these surface species causes the formation of active carbon sites, which are supposed to accelerate the soot oxidation.  相似文献   
59.
Sheet-bulk metal forming processes combine conventional sheet forming processes with bulk forming of sheet semi-finished parts. In these processes the sheets undergo complex forming histories. Due to in- and out-of-plane material flow and large accumulated plastic strains, the conventional failure prediction methods for sheet metal forming such as forming limit curve fall short. As a remedy, damage models can be applied to model damage evolution during those processes. In this study, damage evolution during the production of two different toothed components from DC04 steel is investigated. In both setups, a deep drawn cup is upset to form a circumferential gearing. However, the two final products have different dimensions and forming histories. Due to combined deep drawing and upsetting processes, the material flow on the cup walls is three-dimensional and non-proportional. In this study, the numerical and experimental investigations for those parts are presented and compared. Damage evolution in the process chains is simulated with a Lemaitre damage criterion. Microstructural analysis by scanning electron microscopy is performed in the regions with high mechanical loading. It is observed that the evolution of voids in terms of void volume fraction is strongly dependent on the deformation path. The comparison of simulation results with microstructural data shows that the void volume fraction decreases in the upsetting stage after an initial increase in the drawing stage. Moreover, the concurrent numerical and microstructural analysis provides evidence that the void volume fraction decreases during compression in sheet-bulk metal forming.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号