首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9799篇
  免费   893篇
  国内免费   22篇
工业技术   10714篇
  2024年   8篇
  2023年   111篇
  2022年   181篇
  2021年   307篇
  2020年   211篇
  2019年   283篇
  2018年   341篇
  2017年   348篇
  2016年   406篇
  2015年   350篇
  2014年   493篇
  2013年   631篇
  2012年   777篇
  2011年   861篇
  2010年   643篇
  2009年   650篇
  2008年   546篇
  2007年   425篇
  2006年   399篇
  2005年   330篇
  2004年   301篇
  2003年   323篇
  2002年   262篇
  2001年   203篇
  2000年   216篇
  1999年   182篇
  1998年   215篇
  1997年   123篇
  1996年   100篇
  1995年   78篇
  1994年   63篇
  1993年   44篇
  1992年   50篇
  1991年   33篇
  1990年   31篇
  1989年   37篇
  1988年   16篇
  1987年   22篇
  1986年   17篇
  1985年   14篇
  1984年   16篇
  1983年   15篇
  1982年   5篇
  1981年   7篇
  1980年   6篇
  1978年   6篇
  1977年   8篇
  1976年   13篇
  1975年   3篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Anodic oxidation is the process of creating a titanium oxide layer with various defects more dense and stable. In this study, a dense, stable and porous oxide layer was formed using anodic spark oxidation on pure titanium surface and hydroxyapatite crystals were formed on its surface via a hydrothermal treatment. A mixture of 0.02M−GP (Glycerolphosphate disodium salt) and 0.2M-CA (Calcium acetate) was used as an electrolyte. By increasing the anodizing voltage to 220, 260, 300, and 360 V, the effects of the anodizing voltage were examined by evaluating the film properties after anodization and a hydrothermal treatment. Breakdown occurred around 230 V. As the voltage increased after breakdown, the pore size increased. After the hydrothermal treatment, the amount of HA crystal precipitation was also increased as the voltage increased. The mean surface roughness (Ra) of the anodizing surface was also increased as the voltage increased. The Ra value was larger in the hydrothermally treated group compared with the group treated with anodization as a result of the HA crystals present on the surface after the hydrothermal treatment. Corrosion resistance of the surface modified by anodization was significantly increased in a saline solution compared to that for the non-treated group; this increased further after the hydrothermal treatment. These increases were most likely due to a thick stable oxide layer formed through anodization. Thus, it is believed that titanium with its surface modified through anodic spark oxidation would be a suitable biomaterial due to its corrosion resistance and biocompatibility.  相似文献   
102.
Boron distribution in a low-alloy steel (15B26:0.25C-0.29Cr-0.03Ti-0.028Al-0.0016B) has been characterized employing Fission Track Etching (FTE) method. The characteristics of boron distribution with variation of cooling rate after austenitization and through case-hardened depth after carburization were analyzed. Hardenability of 15B26 steel was also evaluated through Jominy-end-quench test and the results are as follows: It was observed that, in austenitized 15B26 steel, boron was distributed uniformly over the whole area of specimen with a little segregation along the austenite grain boundaries at higher cooling rates and boron precipitates were formed in the intergranular as well as transgranular regions at lower cooling rates. Jominy equivalents (HRC 35) of 15B26 steel were fairly increased between the Jominy temperatures of 820°C and 850°C, which might result from the increase of the amount of soluble boron in austenite due to the dissolution of borocarbides between 820°C and 850°C. In carburized 15B26 steel, the different through thickness features of boron distribution from the carburized surface were found; coarse nodular boron precipitates up to the depth of 150 μm; uniform distribution of dissolved boron between 150~650 μm; and segregation of boron atoms along grain boundaries in the regions deeper than 650 μm.  相似文献   
103.
In this research, an effective method for the form error prediction in side wall machining with a flat end mill is suggested. The form error is predicted directly from the tool deflection without surface generation by cutting edge locus with time simulation. The developed model can predict the surface form error accurately about 300 times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacturing. This study contributes to real time surface shape estimation and cutting process planning for the improvement of form accuracy.  相似文献   
104.
STS310S and SC-STS310S (simultaneously co-deposited chromium and aluminum onto 310S austenitic stainless steel substrate by pack-cementation process) were used as separator materials on the cathode side of a molten carbonate fuel cell. With the STS310S, corrosion proceeded via three steps; a formation step of unstable corrosion product, a protection step against corrosion until breakaway, and an advance step of corrosion after breakaway. The final corrosion product was LiFeO2 and the loss of mass was 6.5 mg/cm2 after a corrosion test of 480 hr at 650°C. The SC-STS310S showed more effective corrosion resistance, however, than did common STS310S. There was especially no corrosion loss on the SC-STS310S after the 480 hr corrosion test. It is anticipated that it will be very useful as an alternative separator on the cathode side off the MCFC in the future.  相似文献   
105.
With the aim of assessing the degradation of Zr−2.5Nb pressure tubes operating in the Wolsong unit-1 nuclear power plant, characterization tests are being conducted on irradiated Zr−2.5Nb tubes removed after 10-year operation. The examined tube had been exposed to temperatures ranging from 264 to 306°C and a neutron fluence of 8.9×1021 n/cm2 (E>1 MeV) at the maximum. Tensile tests were carried out at temperatures ranging from RT to 300°C. The density of a-type and c-type dislocations was examined on the irradiated Zr-2.5Nb tube using a transmission electron microscope. Neutron irradiation up to 8.9×1021 n/cm2 (E>1 MeV) yielded an increase in a-type dislocation density of the Zr−2.5Nb pressure tube to 7.5×1014 m−2, which was highest at the inlet of the tube exposed to the low temperature of 275°C. In contranst, the c-component dislocation density did not change with irradiation, keeping an initial dislocation density of 0.8×1014 m−2 over the whole length of the tube. As expected, the neutron irradiation increased mechanical strength by about 17–26% in the transverse direction and by 34–39% in the longitudinal direction compared to that of the unirradiated tube at 300°C. The change in the mechanical properties with irradiation is discussed in association with the microstructural change as a function of temperature and neutron fluence.  相似文献   
106.
Ni−B film of 1 μm thickness was electrolessly deposited on an electroplated Cu bus electrode. The film, which encapsulates the Cu bus electrodes, prevents Cu oxidation and serves as a diffusion barrier against Cu contamination of the transparent dielectric layer in a plasma display during the firing process at 580 °C. The microstructure of theas-deposited barrier film was amorphous phase and crystallized to Ni and Ni3B after annealing at 300 °C. The good barrier properties observed here can be explained by Ni3B precipitates at the grain boundaries acting as a fast diffusion path via pre-annealing at 300 °C before the firing process at 580 °C.  相似文献   
107.
This study investigates the theoretical mechanisms by which the variations in source attribution (multiple sources vs. single source) and specialization (multifunctionality vs. single functionality) of Internet of Things (IoT) devices influence the quality of human–IoT interaction. Results from a between‐subjects experiment (N = 100) indicate that IoT devices that elicit the sense of multiple agencies and are specialized in a single function induce greater social presence and perceived expertise, which, in turn, lead individuals to show a more positive attitude toward the devices and to ascribe greater quality to the information transmitted by them. The results also reveal that the effect of multiple source attribution is more pronounced for individuals for whom the content of the information has low personal relevance.  相似文献   
108.
We study quantum teleportation between two different types of optical qubits using hybrid entanglement as a quantum channel under decoherence effects. One type of qubit employs the vacuum and single-photon states for the basis, called a single-rail single-photon qubit, and the other utilizes coherent states of opposite phases. We find that teleportation from a single-rail single-photon qubit to a coherent-state qubit is better than the opposite direction in terms of fidelity and success probability. We compare our results with those using a different type of hybrid entanglement between a polarized single-photon qubit and a coherent state.  相似文献   
109.
Micro-/nanoparticle-based systems are regarded as one of the possible candidates due to the engineerability and multifunctionality to maximize the accumulation of the nano-/microparticle-based drug delivery system on the target. Recent advances in nanotechnology enable the fabrication of diverse particle shapes from simple spherical particles to more complex shapes. The particle dynamics in blood flow and endocytosis characteristics of non-spherical particles change as the non-sphericity effect increases. We used a numerical approach to investigate the particle dynamics in linear shear flow near a wall. We examined the dynamics of slender cylindrical particles with aspect ratio γ = 5.0 in terms of particle trajectory, velocity, and force variation for different Stokes numbers over time. We identified the rotating inertia of particle near a wall as the source of inertial migration toward the wall. The drift velocity of slender cylindrical particles is comparable to that of discoidal particles. We discuss the possibilities and limitations of using slender cylindrical particles as a drug delivery system.  相似文献   
110.
We propose a control strategy that could steer the group of mobile agents in the plane to achieve a specified formation. The control law could be implemented in a fully decentralized manner so that each agent moves on their own local reference frame. Under the acyclic minimally persistent graph topology, each agent measures the relative displacements of neighboring agents and then adjusts the distances between them to achieve the desired formation. As well as achieving a fixed formation, we could resize the formation only by changing the leader edge, which connects the leader with the first‐follower in acyclic minimally persistent graph, without changing the structures of the control law. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号