首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   21篇
  国内免费   1篇
工业技术   229篇
  2023年   5篇
  2022年   8篇
  2021年   25篇
  2020年   15篇
  2019年   18篇
  2018年   33篇
  2017年   17篇
  2016年   16篇
  2015年   13篇
  2014年   19篇
  2013年   23篇
  2012年   4篇
  2011年   14篇
  2010年   11篇
  2009年   5篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有229条查询结果,搜索用时 0 毫秒
21.

Software design patterns are well-known solutions for solving commonly occurring problems in software design. Detecting design patterns used in the code can help to understand the structure and behavior of the software, evaluate the quality of the software, and trace important design decisions. To develop and maintain a software system, we need sufficient knowledge of design decisions and software implementation processes. However, the acquisition of knowledge related to design patterns used in complex software systems is a challenging, time-consuming, and costly task. Therefore, using a suitable method to detect the design patterns used in the code reduces software development and maintenance costs. In this paper, we proposed a new method based on conceptual signatures to improve the accuracy of design pattern detection. So we used the conceptual signatures based on the purpose of patterns to detect the patterns’ instances that conform to the standard structure of patterns, and cover more instances of patterns’ variants and implementation versions of the patterns and improve the accuracy of pattern detection. The proposed method is a specific process in two main phases. In the first phase, the conceptual signature and detection formula for each pattern is determined manually. Then in the second phase, each pattern in the code is detected in a semi-automatic process using the conceptual signature and pattern detection formula. To implement the proposed method, we focused on GoF design patterns and their variants. We evaluated the accuracy of our proposed method on five open-source projects, namely, Junit v3.7, JHotDraw v5.1, QuickUML 2001, JRefactory v2.6.24, and MapperXML v1.9.7. Also, we performed our experiments on a set of source codes containing the instances of GoF design patterns’ variants for a comprehensive and fair evaluation. The evaluation results indicate that the proposed method has improved the accuracy of design pattern detection in the code.

  相似文献   
22.
23.
This study elucidates the capability of a novel technique for producing microcapsules at an enormously short time and low cost. This technique is based on the difference between dielectric constants of core and coat materials. Edible citric acid was mixed with various biomacromolecules at ratios of 1:5, 1:10, and 1:100. Each mixture was treated up to 600 s at various powers (120–1200 W) in a microwave oven. Subsequently, the microcapsules were separated by distinct sieves, and their apparent structure and quality were evaluated using binoculars, and photographs were taken for visual comparisons. Our observations showed that only five hydrocolloids were able to produce high-quality and efficient encapsulation [casein > inulin > carboxymethylcellulose (CMC) > low methoxyl (LM) pectin (9/5%) > sorbitol]. Moreover, the highest coating efficiency was seen at highest intensity (1200 W) at a mixing ratio of 1:10. Furthermore, the optimum treating time periods for those five efficient coating materials were about 400, 75, 400, 100, and 100 s.  相似文献   
24.
The aim of this article is to determine the effect of surface pretreatments, prior to the silanization, on the structure and tensile properties of the glass fibers and their epoxy composites. Commercial glass fibers were washed with acetone to remove the soluble portion of sizing, calcinated for the removal of organic matter, activated for surface silanol regeneration, and silanizated with glycidoxypropyltrimethoxysilane (GPS). Tensile test was carried out. The morphology of pretreated glass fibers and the fracture surfaces of the epoxy composites were observed with a scanning electron microscope (SEM). The results revealed that both apparent modulus and strength of a single glass fiber and the glass fiber/epoxy resin composites strongly depend on the fiber surface pretreatments. The acetone treatment did not change appreciably the composition and tensile properties of glass fibers, but there was a weak interface between fibers and matrix. In calcinated and acid activated fibers, the two competitive effects was observed: (1) degradation of the fibers themselves and (2) improved interfacial adhesion between the glass fibers and the epoxy matrix, once the samples was silanizated. The ATR‐FTIR results show that the surface content of Si OH increases as reflected by the increasing of the Si O band, resulting in an interaction between silane coupling agent and glass fiber. POLYM. COMPOS., 91–100, 2016. © 2014 Society of Plastics Engineers  相似文献   
25.
The grafting of methyl methacrylate (MMA) onto ultra‐high‐molecular‐weight polyethylene (UHMWPE) and chromic acid etched UHMWPE was conducted with a preirradiation method in air in the presence of a Mohr salt and sulfuric acid. The grafted samples were characterized by Fourier transform infrared (FTIR) spectroscopy, a gravimetric method, differential scanning calorimetry, scanning electron microscopy (SEM), and interfacial bonding strength measurements. The FTIR results showed the presence of ether and carbonyl groups in the MMA‐grafted UHMWPE (MMA‐g‐UHMWPE) samples. The Taguchi experimental design method was used to find the best degree of grafting (DG) and bonding strength. The efficient levels for different variables were calculated with an analysis of variance of the results. SEM micrographs of MMA‐g‐UHMWPE samples showed that with increasing DG and chromic acid etching, the MMA‐g‐UHMWPE rich phase increased on the surface; this confirmed the high interfacial bonding strength of the grafted samples with bone cement. The grafting of the MMA units onto UHMWPE resulted in a lower crystallinity, and the crystallization process proceeded at a higher rate for the MMA‐g‐UHMWPE samples compared to the initial UHMWPE; this suggested that the MMA grafted units acted as nucleating agents for the crystallization of UHMWPE. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
26.
A new chelating resin was prepared by coupling Amberlite XAD-4 with phenol through an azo spacer, then modified by allyl bromide and characterized (by elemental analysis and IR) and studied for preconcentration of Cu(II) using flame atomic absorption spectrometry (FAAS) for metal monitoring. The optimum pH value for sorption of the above mentioned metal ion was 4.5. The resin was subjected to chemical evaluation through batch binding and column chromatography of Cu(II). The chelating resin can be reused for 15 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 98% was obtained for the metal ion with 0.5 M HNO3 as eluting agent. The equilibrium adsorption data of Cu(II) on modified resin were analyzed by Langmuir, Freundlich and Temkin models. Based on equilibrium adsorption data the Langmuir, Freundlich and Temkin constants were determined to be 0.061, 0.193 and 0.045 at pH 4.5 and 25 °C. The method was applied for the copper determination from industrial waste water sample.  相似文献   
27.
Waste poly(ethylene terephthalate) (W‐PET)/acrylonitrile‐butadiene‐styrene (ABS) blends were prepared with a variety of compositions at several rotor speeds in an internal mixer, replacing ABS with different maleated ABS (ABS‐g‐MA) samples in compatibilized blends. A Box–Behnken model for three variables, with three levels, was chosen for the experimental design. ABS‐g‐MA‐based samples exhibited finer particles with a more uniform particle size distribution than ABS‐based ones, as a consequence of the compatibilizing process. Rheological results implied a greater elastic nature for compatibilized blends which increased in the presence of more ABS content; the same trend was observed for complex viscosity. With increasing ABS‐g‐MA or MA concentration, more shear thinning behavior was observed similar to that of ABS; whereas the uncompatibilized blends showed Newtonian behavior like that of W‐PET. The observed shifting in TgW‐PET and TgABS obtained from dynamic mechanical thermal analysis confirmed the good compatibility in W‐PET/ABS‐g‐MA blends in contrast with that in ordinary W‐PET/ABS blends. The mechanical properties were measured and modeled versus the various factors considered in a response surface methodology. The experimental data found a good fit with the obtained equation models. The mechanical properties of the compatibilized blends showed a large positive deviation from the mixing rule, while the uncompatibilized samples had lower properties, even compared to those predicted by the mixing rule. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   
28.
Biosurfactants are produced by important types of microorganisms such as bacteria, yeast, and filamentous fungi and have been used in a variety of industries. Among the 15 crude oil-degrading fungi, the two molds and one yeast were identified by 18S rDNA sequences as Mucor circinelloides strain SKMC, Fusarium fujikuroi strain DB2, and Rhodotorula mucilaginosa strain SKF2. These strains were isolated from crude oil–contaminated soil, diesel oil–contaminated soil, and activated sludge in the Oil Refinery Plant in Isfahan, Iran, respectively. The yeast strain was identified as a novel crude oil–degrading and biosurfactant-producing fungi in the presence of (1% v/v) Iranian light crude oil in the minimal salt medium (MSM). The highest amount of the dry weight of produced biosurfactant was measured at 6.2 g L−1. Chemical nature of produced biosurfactant was determined as a surface-active sophorolipid biosurfactant compound by thin-layer chromatography, Fourier transform infra-red spectroscopy, and gas chromatography–mass spectrometry (GC–MS) analysis. The residual hydrocarbons in the MSM were analyzed by GC–MS, and it was shown that octadecane and docosane were eliminated by this novel strain completely.  相似文献   
29.
The accurate prediction of the visual comfort zone in an indoor environment is difficult as it depends on many parameters. This is especially the case for large compact urban areas in which the density and shadow from neighboring buildings can limit the accessible daylighting in indoor spaces. This paper investigates the satisfaction range for illuminance regarding indoor air temperature in office buildings and the significant parameters affecting this range in six office buildings in Tehran, Iran. Lighting comfort has been evaluated by a subjective survey (509 total responses) and field measurement. The questionnaires were filled out in 146 and 109 rooms in summer and winter, respectively. The results show that the illuminance should not be less than 550 lx, while illuminance between 600 and 650 lx provides the highest satisfaction level. The satisfaction with lighting level is affected by individual parameters such as age, type of activity, and environmental parameters such as window orientation, external obscurations, and season. A relationship was observed between lighting level satisfaction and thermal condition acceptance, and the overall comfort depends more on thermal conditions than the lighting level.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号