首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   25篇
工业技术   348篇
  2024年   1篇
  2023年   8篇
  2022年   6篇
  2021年   19篇
  2020年   10篇
  2019年   30篇
  2018年   29篇
  2017年   19篇
  2016年   16篇
  2015年   10篇
  2014年   18篇
  2013年   31篇
  2012年   22篇
  2011年   13篇
  2010年   14篇
  2009年   15篇
  2008年   15篇
  2007年   7篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  1999年   2篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1976年   1篇
排序方式: 共有348条查询结果,搜索用时 31 毫秒
41.
As microelectronics device feature sizes continue to shrink and wafers continue to increase in size, it is necessary to have tighter tolerances during the fabrication process to maintain high yields. Feedback control has, therefore, become an important issue in plasma processing equipment design; comprehensive plasma equipment models linked to control algorithms would greatly aid in the investigation and optimal selection of control strategies. This paper reports on a numerical plasma simulation tool, the virtual plasma equipment model (VPEM), which addresses this need to test feedback control strategies and algorithms on plasma processing equipment. The VPEM is an extension of the hybrid plasma equipment model which has been augmented by sensors and actuators, linked together through a programmable controller. The sensors emulate experimental measurements of species densities, fluxes, and energies, while the actuators change process parameters such as pressure, inductive power, capacitive power, electrode voltages, and mole fraction of gases. Controllers were designed using a response surface based methodology. Results are presented from studies in which these controllers were used to compensate for a leak of N2 into an Ar discharge, to stably control drifts in process parameters such as pressure and power in Ar and Ar/Cl2, and to nullify the effects of long term changes in wall conditions in Cl2 containing plasmas. A new strategy for improving the ion energy flux uniformity in capacitively coupled discharges using feedback control techniques is also explored  相似文献   
42.
In this study, the mechanical properties of the composite plate were considered Gaussian random fields and their effects on the buckling load and corresponding mode shapes were studied by developing a semi-analytical non-intrusive approach. The random fields were decomposed by the Karhunen−Loève method. The strains were defined based on the assumptions of the first-order and higher-order shear-deformation theories. Stochastic equations of motion were extracted using Euler–Lagrange equations. The probabilistic response space was obtained by employing the non-intrusive polynomial chaos method. Finally, the effect of spatially varying stochastic properties on the critical load of the plate and the irregularity of buckling mode shapes and their sequences were studied for the first time. Our findings showed that different shear deformation plate theories could significantly influence the reliability of thicker plates under compressive loading. It is suggested that a linear relationship exists between the mechanical properties’ variation coefficient and critical loads’ variation coefficient. Also, in modeling the plate properties as random fields, a significant stochastic irregularity is obtained in buckling mode shapes, which is crucial in practical applications.  相似文献   
43.
Existence of a crack in structures would lead to a sudden failure and damage. Establishing a precise analytical model for the cracked element would be a powerful tool to achieve the right answers in the analysis of the structure. The main aim of this article is to formulate a hexahedral interface element for use in nonlinear crack analysis. In this investigation, the kinematics of the discontinuous displacement field along with the virtual work principle, for a body with an internal discontinuity, is utilized. Based on the suggested interpolation functions for the discrete segments, and also the element displacement field, the element stiffness matrix is calculated. The proposed element can be used for modeling of the discrete cracks in three-dimensional problems, such as a concrete dam. Several numerical examples are analyzed for the accuracy test and a few of them are presented here. The results indicated that utilizing sufficient elements yields suitable answers.  相似文献   
44.
BACKGROUND: The more common occurrence in women of cough due to angiotensin-converting enzyme inhibitors raises the possibility of gender-related differences in the sensitivity of the cough reflex. Of two recent studies that evaluated cough response to inhaled capsaicin in normal subjects, one demonstrated heightened sensitivity of the cough reflex in women compared with men, while the other revealed no gender-related differences. To further investigate this question, we reviewed our experience with cough challenge testing in normal volunteers. STUDY OBJECTIVE: To compare cough reflex sensitivity in healthy adult female and male subjects. DESIGN: Retrospective data analysis. SETTING: Academic medical center. PARTICIPANTS: One hundred healthy volunteers (50 male, 50 female). Interventions: Subjects inhaled capsaicin in ascending, doubling concentrations until the concentration inducing five or more coughs (C5) was reached. In addition, the concentration inducing two or more coughs (C2; cough threshold) was measured. Results: Mean log C5 was significantly lower in women than in men: 1.02+/-0.09 (SEM) microM vs 1.41+/-0.08 microM, respectively (p=0.002). Log C2 (cough threshold) was also significantly lower in female subjects: 0.534+/-0.068 microM vs 0.870+/-0.065 microM in male subjects (p=0.00058). CONCLUSION: Healthy women have a more sensitive cough reflex than do healthy men. The reasons for this significant gender difference remain to be elucidated, but may involve a heightened sensitivity, in women, of the sensory receptors within the respiratory tract that mediate cough.  相似文献   
45.
46.
Khalifeh  Sara  Tavakoli  Mitra 《Iranian Polymer Journal》2019,28(12):1023-1033

Microstructural development of elastomeric nanocomposites based on (50/50 wt%) styrene butadiene rubber (SBR) and epoxidized natural rubber (50 mol% epoxidation, ENR50) as the rubber matrix including two types of carbon fillers, carbon black (CB) and functionalized multiwall carbon nanotube (NH2-MWCNT), which were prepared through melt mixing, was studied. The results from FTIR analysis show that there is interaction between functional groups on MWCNT surface and the rubber chains. The AFM analysis also indicates good dispersion of filler particles in the rubber phases. FESEM images from cryo-fractured surface of samples have revealed that nanotubes were rarely pulled out of matrix and their diameter increased, resulting from good interaction between MWCNTs and rubber chains. The DMA results confirm good interfacial interaction between them. Furthermore, the reduced difference between the two Tgs of phases (ΔTg) shows that the incorporation of 3 phr MWCNT into the blend leads to increment in rubber phase compatibility but at higher MWCNT content (5 phr) due to lower Mooney viscosity of SBR phase, MWCNTs tend to remain in this phase. The bound rubber was adopted to characterize the polymer–filler interaction, showing that bound rubber content has an increasing trend with increasing in fillers content. The cure rheometric studies reveal that MWCNTs accelerate the cure process due to the presence of amine groups on the nanotube surface. In addition, the mechanical properties of samples show an increasing trend by increasing nano-filler content.

  相似文献   
47.
In situ prolonged delivery of drugs at the site of tumor can be satisfactorily accelerated patient recovery. We compared the effect of temozolomide while incorporated by polycaprolactone nanofibers on the apoptotic behavior of U87 glioma cells. After biocompatibility evaluation of nanofibers by scanning electron microscope and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide analysis, the apoptosis of U87 cells was evaluated using p53, Bcl2 and Bax genes expression. It was found that nanofiber-temozolomide group showed a greater ability to induce apoptosis as well as have a significantly diminished initial burst release of drug compared with other groups and have promising potential in treating cancer.  相似文献   
48.
Stable and compatible cathode materials are a key factor for realizing the low-temperature (LT, ≤600?°C) operation and practical implementations of solid oxide fuel cells (SOFCs). In this study, perovskite oxides SrFe1-xTixO3-δ (x?< = 0.1), with various ratios of Ti doping, are prepared by a sol-gel method for cathode material for LT-SOFCs. The structure, morphology and thermo-gravimetric characteristics of the resultant SFT powders are investigated. It is found that the Ti is successfully doped into SrFeO3-δ to form a single phase cubic perovskite structure and crystal structure of SFT shows better stability than SrFeO3-δ. The dc electrical conductivity and electrochemical properties of SFT are measured and analysed by four-probe and electrochemical impedance spectra (EIS) measurements, respectively. The obtained SFT exhibits a very low polarization resistance (Rp), .01 Ωcm2 at 600?C. The SFT powders using as cathode in fuel cell devices, exhibit maximum power density of 551?mW?cm?2 with open circuit voltage (OCV) of 1.15?V at 600?C. The good performance of the SFT cathode indicates a high rate of oxygen diffusion through the material at cathode. By enabling operation at low temperatures, SFT cathodes may result in a practical implementation of SOFCs.  相似文献   
49.
50.
Heavy water or deuterium oxide (D2O) comprises deuterium, a hydrogen isotope twice the mass of hydrogen. Contrary to the disadvantages of deuterated perovskites, such as shorter recombination lifetimes and lower/invariant efficiencies, the serendipitous effect of D2O as a beneficial solvent additive for enhancing the power conversion efficiency (PCE) of triple-A cation (cesium (Cs)/methylammonium (MA)/formaminidium (FA)) perovskite solar cells from ≈19.2% (reference) to 20.8% (using 1 vol% D2O) with higher stability is reported. Ultrafast optical spectroscopy confirms passivation of trap states, increased carrier recombination lifetimes, and enhanced charge carrier diffusion lengths in the deuterated samples. Fourier transform infrared spectroscopy and solid-state NMR spectroscopy validate the N–H2 group as the preferential isotope exchange site. Furthermore, the NMR results reveal the induced alteration of the FA to MA ratio due to deuteration causes a widespread alteration to several dynamic processes that influence the photophysical properties. First-principles density functional theory calculations reveal a decrease in PbI6 phonon frequencies in the deuterated perovskite lattice. This stabilizes the PbI6 structures and weakens the electron–LO phonon (Fröhlich) coupling, yielding higher electron mobility. Importantly, these findings demonstrate that selective isotope exchange potentially opens new opportunities for tuning perovskite optoelectronic properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号