首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   568篇
  免费   27篇
  国内免费   2篇
工业技术   597篇
  2024年   2篇
  2023年   14篇
  2022年   40篇
  2021年   33篇
  2020年   21篇
  2019年   21篇
  2018年   33篇
  2017年   33篇
  2016年   27篇
  2015年   18篇
  2014年   33篇
  2013年   53篇
  2012年   37篇
  2011年   27篇
  2010年   26篇
  2009年   32篇
  2008年   21篇
  2007年   33篇
  2006年   13篇
  2005年   14篇
  2004年   8篇
  2003年   3篇
  2001年   3篇
  2000年   1篇
  1999年   7篇
  1998年   5篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1986年   3篇
  1985年   5篇
  1984年   7篇
  1983年   3篇
  1982年   1篇
排序方式: 共有597条查询结果,搜索用时 15 毫秒
71.
Failure mechanisms associated with silicon‐based anodes are limiting the implementation of high‐capacity lithium‐ion batteries. Understanding the aging mechanism that deteriorates the anode performance and introducing novel‐architectured composites offer new possibilities for improving the functionality of the electrodes. Here, the characterization of nano‐architectured composite anode composed of active amorphous silicon domains (a‐Si, 20 nm) and crystalline iron disilicide (c‐FeSi2, 5–15 nm) alloyed particles dispersed in a graphite matrix is reported. This unique hierarchical architecture yields long‐term mechanical, structural, and cycling stability. Using advanced electron microscopy techniques, the nanoscale morphology and chemical evolution of the active particles upon lithiation/delithiation are investigated. Due to the volumetric variations of Si during lithiation/delithiation, the morphology of the a‐Si/c‐FeSi2 alloy evolves from a core‐shell to a tree‐branch type structure, wherein the continuous network of the active a‐Si remains intact yielding capacity retention of 70% after 700 cycles. The root cause of electrode polarization, initial capacity fading, and electrode swelling is discussed and has profound implications for the development of stable lithium‐ion batteries.  相似文献   
72.
Stem cells secrete trophic factors that induce angiogenesis. These soluble factors are promising candidates for stem cell–based therapies, especially for cardiovascular diseases. Mechanical stimuli and biophysical factors presented in the stem cell microenvironment play important roles in guiding their behaviors. However, the complex interplay and precise role of these cues in directing pro‐angiogenic signaling remain unclear. Here, a platform is designed using gelatin methacryloyl hydrogels with tunable rigidity and a dynamic mechanical compression bioreactor to evaluate the influence of matrix rigidity and mechanical stimuli on the secretion of pro‐angiogenic factors from human mesenchymal stem cells (hMSCs). Cells cultured in matrices mimicking mechanical elasticity of bone tissues in vivo show elevated secretion of vascular endothelial growth factor (VEGF), one of representative signaling proteins promoting angiogenesis, as well as increased vascularization of human umbilical vein endothelial cells (HUVECs) with a supplement of conditioned media from hMSCs cultured across different conditions. When hMSCs are cultured in matrices stimulated with a range of cyclic compressions, increased VEGF secretion is observed with increasing mechanical strains, which is also in line with the enhanced tubulogenesis of HUVECs. Moreover, it is demonstrated that matrix stiffness and cyclic compression modulate secretion of pro‐angiogenic molecules from hMSCs through yes‐associated protein activity.  相似文献   
73.
74.
Background and objective: Capsaicin is the main pungent principle present in chili peppers has been found to possess P-glycoprotein (P-gp) inhibition activity in vitro, which may have the potential to modulate bioavailability of P-gp substrates. Therefore, purpose of this study was to evaluate the effect of capsaicin on intestinal absorption and bioavailability of fexofenadine, a P-gp substrate in rats.

Methods: The mechanistic evaluation was determined by non-everted sac and intestinal perfusion studies to explore the intestinal absorption of fexofenadine. These results were confirmed by an in vivo pharmacokinetic study of oral administered fexofenadine in rats.

Results: The intestinal transport and apparent permeability (Papp) of fexofenadine were increased significantly by 2.8 and 2.6 fold, respectively, in ileum of capsaicin treated rats when compared to control group. Similarly, absorption rate constant (Ka), fraction absorbed (Fab) and effective permeability (Peff) of fexofenadine were increased significantly by 2.8, 2.9 and 3.4 fold, respectively, in ileum of rats pretreated with capsaicin when compared to control group. In addition, maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC) were increased significantly by 2.3 and 2.4 fold, respectively, in rats pretreated with capsaicin as compared to control group. Furthermore, obtained results in rats pretreated with capsaicin were comparable to verapamil (positive control) treated rats.

Conclusions: Capsaicin pretreatment significantly enhanced the intestinal absorption and bioavailability of fexofenadine in rats likely by inhibition of P-gp mediated cellular efflux, suggesting that the combined use of capsaicin with P-gp substrates may require close monitoring for potential drug interactions.  相似文献   

75.
Optimization and Engineering - This paper presents an efficient and compact MATLAB code for three-dimensional stress-based sensitivity analysis. The 146 lines code includes the finite element...  相似文献   
76.
Mechanics of Time-Dependent Materials - Creep deformation and rupture behavior of nitrogen-alloyed (0.14 wt.%) nuclear grade 316LN austenitic stainless steel were investigated for the varying...  相似文献   
77.
Microsystem Technologies - In this paper, a very small size (14 × 20 mm2), tunable printed antenna consisting of Asymmetric Coplanar Strip (ACS) feedline with three...  相似文献   
78.
Microsystem Technologies - In this work, a Chevron electrothermal actuator is designed and its analytical model is developed. Chevron actuator works on the principle of Joules heating effect and...  相似文献   
79.
We present a well-balanced nodal discontinuous Galerkin (DG) scheme for compressible Euler equations with gravity. The DG scheme makes use of discontinuous Lagrange basis functions supported at Gauss–Lobatto–Legendre (GLL) nodes together with GLL quadrature using the same nodes. The well-balanced property is achieved by a specific form of source term discretization that depends on the nature of the hydrostatic solution, together with the GLL nodes for quadrature of the source term. The scheme is able to preserve isothermal and polytropic stationary solutions upto machine precision on any mesh composed of quadrilateral cells and for any gravitational potential. It is applied on several examples to demonstrate its well-balanced property and the improved resolution of small perturbations around the stationary solution.  相似文献   
80.
A printed small size (12×16.5 mm) ACS-fed e-shaped uniplanar antenna is proposed for dual band applications. The multiband operating characteristics have been achieved by integrating e-shaped radiating strips to the 50ΩACSfeed line. Two simultaneously operating wide bands have been generated by using optimized radiating branch strips for the multiband applications. For obtaining size reduction and wider impedance bandwidth, e-shaped meandered elements are chosen in the design. The proposed design features the bandwidth (VSWR < 2, reflection coefficient below–10 dB) of 100 MHz in 2.4–2.5 GHz, and 2100MHzin 4.0–6.1 GHz. The developed multiband antenna can be useful for several wireless communication applications, such as 2.4 GHz Bluetooth/RFID,WLAN(2.4/5.2/5.8 GHz), WiMAX (5.5 GHz), US public safety band (4.9 GHz), ISM band, radio frequency energy harvesting and internet of things (IoT) applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号