首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   12篇
工业技术   106篇
  2023年   3篇
  2022年   9篇
  2021年   40篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   10篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   7篇
  2010年   6篇
  2009年   1篇
  2006年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
91.
The development of efficient bioprocesses requires inexpensive and renewable substrates. Molasses, a by-product of the sugar industry, contains mostly sucrose, a disaccharide composed of glucose and fructose, both easily absorbed by microorganisms. Yarrowia lipolytica, a platform for the production of various chemicals, can be engineered for sucrose utilization by heterologous invertase expression, yet the problem of preferential use of glucose over fructose remains, as fructose consumption begins only after glucose depletion what significantly extends the bioprocesses. We investigated the role of hexose transporters and hexokinase (native and fructophilic) in this preference. Analysis of growth profiles and kinetics of monosaccharide utilization has proven that the glucose preference in Y. lipolytica depends primarily on the affinity of native hexokinase for glucose. Interestingly, combined overexpression of either hexokinase with hexose transporters significantly accelerated citric acid biosynthesis and enhanced pentose phosphate pathway leading to secretion of polyols (31.5 g/L vs. no polyols in the control strain). So far, polyol biosynthesis was efficient in glycerol-containing media. Moreover, overexpression of fructophilic hexokinase in combination with hexose transporters not only shortened this process to 48 h (84 h for the medium with glycerol) but also allowed to obtain 23% more polyols (40 g/L) compared to the glycerol medium (32.5 g/L).  相似文献   
92.
93.
Plant-based platforms have been successfully applied for the last two decades for the efficient production of pharmaceutical proteins. The number of commercialized products biomanufactured in plants is, however, rather discouraging. Cytokines are small glycosylated polypeptides used in the treatment of cancer, immune disorders and various other related diseases. Because the clinical use of cytokines is limited by high production costs they are good candidates for plant-made pharmaceuticals. Several research groups explored the possibilities of cost-effective production of animal cytokines in plant systems. This review summarizes recent advances in this field.  相似文献   
94.
Aniline was oxidized with mixtures of two oxidants, ammonium peroxydisulfate and silver nitrate, to give polyaniline-silver composites with variable content of silver in the composites. The presence of peroxydisulfate has a marked accelerating effect on the oxidation of aniline with silver nitrate. Oxidations in 1 M methanesulfonic acid produced composites in high yield. The molecular structure of the polyaniline was confirmed by UV-visible and FTIR spectra, and the polymeric character was established by gel-permeation chromatography. The content of silver varied between 0 and 70 wt.%. The silver nanoparticles were smaller than 100 nm. The conductivity of the composites was of the order of units S cm−1. Only at high silver nitrate contents in the reaction mixture, the conductivity of products exceeded 100 S cm−1. The conductivity of the composites sometimes increased after deprotonation of the polyaniline salt to a non-conducting base. Such conductivity behaviour is discussed in terms of the percolation model.  相似文献   
95.
Domain wall conduction in insulating Pb(Zr(0.2) Ti(0.8))O(3) thin films is demonstrated. The observed electrical conduction currents can be clearly differentiated from displacement currents associated with ferroelectric polarization switching. The domain wall conduction, nonlinear and highly asymmetric due to the specific local probe measurement geometry, shows thermal activation at high temperatures, and high stability over time.  相似文献   
96.
Excessive misuse of antibiotics and antimicrobials has led to a spread of microorganisms resistant to most currently used agents. The resulting global threats has driven the search for new materials with optimal antimicrobial activity and their application in various areas of our lives. In our research, we focused on the formation of composite materials produced by the dispersion of titanium(IV)-oxo complexes (TOCs) in poly(ε-caprolactone) (PCL) matrix, which exhibit optimal antimicrobial activity. TOCs, of the general formula [Ti4O2(OiBu)10(O2CR’)2] (R’ = PhNH2 (1), C13H9 (2)) were synthesized as a result of the direct reaction of titanium(IV) isobutoxide and 4-aminobenzoic acid or 9-fluorenecarboxylic acid. The microcrystalline powders of (1) and (2), whose structures were confirmed by infrared (IR) and Raman spectroscopy, were dispersed in PCL matrixes. In this way, the composites PCL + nTOCs (n = 5 and 20 wt.%) were produced. The structure and physicochemical properties were determined on the basis of Raman microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electron paramagnetic resonance spectroscopy (EPR), and UV–Vis diffuse reflectance spectroscopy (DRS). The degree of TOCs distribution in the polymer matrix was monitored by scanning electron microscopy (SEM). The addition of TOCs micro grains into the PCL matrix only slightly changed the thermal and mechanical properties of the composite compared to the pure PCL. Among the investigated PCL + TOCs systems, promising antibacterial properties were confirmed for samples of PCL + n(2) (n = 5, 20 wt.%) composites, which simultaneously revealed the best photocatalytic activity in the visible range.  相似文献   
97.
In this study the effect of temperature, NaCl and oils (hydrocarbons: C(8)-C(16)) on the formation and solubilization capacity of the systems of oil/monoacylglycerols (MAG):ethoxylated fatty alcohols (CEO(20))/propylene glycol (PG)/water was investigated. The effects of the surfactant mixture on the phase behavior and the concentration of water or oil in the systems were studied at three temperatures (50, 55, 60?°C) and with varied NaCl solutions (0.5; 2; 11%). Electrical conductivity measurement, FTIR spectroscopy and the DSC method were applied to determine the structure and type of the microemulsions formed. The dimension of the microemulsion droplets was characterized by dynamic light scattering. It has been stated that the concentration of CEO(20) has a strong influence on the shape and extent of the microemulsion areas. Addition of a nonionic surfactant to the mixture with MAG promotes an increase in the area of microemulsion formation in the phase diagrams, and these areas of isotropic region did not change considerably depending on the temperature, NaCl solution and oil type. It was found that, depending on the concentration of the surfactant mixture, it was possible to obtain U-type microemulsions with dispersed particles size distribution ranging from 25 to 50?nm and consisting of about 30-32% of the water phase in the systems. The conditions under which the microemulsion region was found (electrolyte and temperature-insensitive, comparatively low oil and surfactant concentration) could be highly useful in detergency.  相似文献   
98.
Understanding the behavior of ferroelectrics on the nanoscale level requires the production of materials of the highest quality and advanced characterization techniques for probing the fascinating properties of these systems with reduced dimensions. Here we give an overview of our recent achievements in this area, which includes the detailed study of the suppression of ferroelectricity in PbTiO3 thin films, the fabrication of PbTiO3/SrTiO3 superlattices in which ferroelectricity shows some surprising behavior, and finally the manipulation of nanoscale ferroelectric domains using the atomic force microscope which leads to the precise analysis of domain wall creep and roughness in Pb(Zr,Ti)O3 thin films.  相似文献   
99.
ABSTRACT:  Since lupin has been introduced as a food ingredient on the market there are more and more reports concerning its allergenic properties. However, only few narrow-leafed lupin proteins have yet been characterized as specific IgE-binding molecules and identified. The aim of the study has been to find and identify the main narrow-leafed lupin globulins that bind to specific IgEs from the sera of lupin-allergic people. Isolated lupin globulins were subjected to immunoblotting with the sera from people who suffered from lupin allergy. Incubation with α-methyl-D-galactopyranoside was performed to eliminate possible binding of unspecific human IgEs. The proteins binding specific IgEs from lupin-allergic patients' sera were identified by means of mass spectrometry. Western blot analysis revealed 2 signals corresponding to lupin globulins that bound to specific IgEs from the sera of people allergic to lupin. The globulins were identified as conglutin-γ and its smaller subunit. The results suggested that individuals that displayed lupin allergy symptoms reacted to conglutin-γ.
Practical Application: The results of the study can contribute to identification of yet undetected allergens of narrow-leafed lupin. This, in turn, can make lupin-fortified products safer for the consumers.  相似文献   
100.
Nanomedicine is currently showing great promise for new methods of diagnosing and treating many diseases, particularly in kidney disease and transplantation. The unique properties of nanoparticles arise from the diversity of size effects, used to design targeted nanoparticles for specific cells or tissues, taking renal clearance and tubular secretion mechanisms into account. The design of surface particles on nanoparticles offers a wide range of possibilities, among which antibodies play an important role. Nanoparticles find applications in encapsulated drug delivery systems containing immunosuppressants and other drugs, in imaging, gene therapies and many other branches of medicine. They have the potential to revolutionize kidney transplantation by reducing and preventing ischemia–reperfusion injury, more efficiently delivering drugs to the graft site while avoiding systemic effects, accurately localizing and visualising the diseased site and enabling continuous monitoring of graft function. So far, there are known nanoparticles with no toxic effects on human tissue, although further studies are still needed to confirm their safety.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号