首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   10篇
工业技术   127篇
  2023年   8篇
  2022年   25篇
  2021年   40篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   10篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   7篇
  2010年   6篇
  2009年   1篇
  2006年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
51.
This paper presents an analysis of the hybrid reinforcement of polyoxymethylene composites. Basalt fibers and monocrystalline silicon carbide fibers were used as reinforcement. Basic tests of mechanical properties were carried out, such as the static tensile and flexural test. The tests were repeated under external factors, such as the influence of water aging and a wide range of exploitation temperatures. The materials were also subjected to tribological tests, that is, determination of the friction coefficient and the specific wear rate. Strength tests revealed an increase in the stiffness of the material as well as a reduction the friction coefficient and abrasive wear. The addition of monocrystalline fibers significantly limited water absorption, stabilized the strength properties in the water environment as well as provided better material's resistance to dynamic impact.  相似文献   
52.
Immature neurons are maintained in cortical regions of the adult mammalian brain. In rodents, many of these immature neurons can be identified in the piriform cortex based on their high expression of early neuronal markers, such as doublecortin (DCX) and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). This molecule plays critical roles in different neurodevelopmental events. Taking advantage of a DCX-CreERT2/Flox-EGFP reporter mice, we investigated the impact of targeted PSA enzymatic depletion in the piriform cortex on the fate of immature neurons. We report here that the removal of PSA accelerated the final development of immature neurons. This was revealed by a higher frequency of NeuN expression, an increase in the number of cells carrying an axon initial segment (AIS), and an increase in the number of dendrites and dendritic spines on the immature neurons. Taken together, our results demonstrated the crucial role of the PSA moiety in the protracted development of immature neurons residing outside of the neurogenic niches. More studies will be required to understand the intrinsic and extrinsic factors affecting PSA-NCAM expression to understand how the brain regulates the incorporation of these immature neurons to the established neuronal circuits of the adult brain.  相似文献   
53.
54.
Recent studies indicate that Acanthamoeba spp. may play a significant role in kidney dysfunction. The aim of the study was to examine the levels of kidney injury molecule 1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and monocyte chemotactic protein 1 (MCP-1), as well as an activity of matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9, respectively) in the kidneys of immunocompetent and immunosuppressed mice infected with Acanthamoeba spp. The levels of KIM-1, NGAL, and MCP-1 were analyzed by enzyme-linked immunosorbent assay (ELISA), and the activity of MMPs was determined by gelatin zymography. The elevated KIM-1 level was found in the kidneys of immunocompetent mice at the beginning of Acanthamoeba spp. infection. In the immunosuppressed mice, the KIM-1 level was statistically different. The statistically decreased NGAL level was found in the kidneys of immunocompetent mice compared to the uninfected mice. In the immunocompromised mice, we found statistically significant differences in MCP-1 levels between the uninfected and infected groups. There was an increase in the expression of both MMP-2 and MMP-9 in the kidneys of immunocompetent and immunosuppressed mice infected with Acanthamoeba spp. compared to the uninfected mice. The results indicate that KIM-1, NGAL, MCP-1, MMP-2, MMP-9, and MMP-9/NGAL might be promising biomarkers of renal acanthamoebiasis.  相似文献   
55.
Resistance in clear cell renal cell carcinoma (ccRCC) against sunitinib is a multifaceted process encompassing numerous molecular aberrations. This induces clinical complications, reducing the treatment success. Understanding these aberrations helps us to select an adapted treatment strategy that surpasses resistance mechanisms, reverting the treatment insensitivity. In this regard, we investigated the dominant mechanisms of resistance to sunitinib and validated an optimized multidrug combination to overcome this resistance. Human ccRCC cells were exposed to single or chronic treatment with sunitinib to obtain three resistant clones. Upon manifestation of sunitinib resistance, morphometric changes in the cells were observed. At the molecular level, the production of cell membrane and extracellular matrix components, chemotaxis, and cell cycle progression were dysregulated. Molecules enforcing the cell cycle progression, i.e., cyclin A, B1, and E, were upregulated. Mass spectrometry analysis revealed the intra- and extracellular presence of N-desethyl sunitinib, the active metabolite. Lysosomal sequestration of sunitinib was confirmed. After treatment with a synergistic optimized drug combination, the cell metabolic activity in Caki-1-sunitinib-resistant cells and 3D heterotypic co-cultures was reduced by >80%, remaining inactive in non-cancerous cells. These results demonstrate geno- and phenotypic changes in response to sunitinib treatment upon resistance induction. Mimicking resistance in the laboratory served as a platform to study drug responses.  相似文献   
56.
The long-term use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in treatment of different chronic inflammatory disorders is strongly restricted by their serious gastrointestinal adverse effects. Therefore, there is still an urgent need to search for new, safe, and efficient anti-inflammatory agents. Previously, we have reported the Mannich base-type derivatives of pyrrolo[3,4-d]pyridazinone which strongly inhibit cyclooxygenase, have better affinity to COX-2 isoenzyme and exert promising anti-oxidant activity. These findings encouraged us to perform further optimization of that structure. Herein, we present the design, synthesis, molecular docking, spectroscopic, and biological studies of novel pyrrolo[3,4-d]pyridazinone derivatives bearing 4-aryl-1-(1-oxoethyl)piperazine pharmacophore 5a,b–6a,b. The new compounds were obtained via convenient, efficient, one-pot synthesis. According to in vitro evaluations, novel molecules exert no cytotoxicity and act as selective COX-2 inhibitors. These findings stay in good correlation with molecular modeling results, which additionally showed that investigated compounds take a position in the active site of COX-2 very similar to Meloxicam. Moreover, all derivatives reduce the increased level of reactive oxygen and nitrogen species and prevent DNA strand breaks caused by oxidative stress. Finally, performed spectroscopic and molecular docking studies demonstrated that new compound interactions with bovine serum albumin (BSA) are moderate, formation of complexes is in one-to-one ratio, and binding site II (subdomain IIIA) is favorable.  相似文献   
57.
Through the use of new genomic and metabolomic technologies, our comprehension of the molecular and biochemical etiologies of genetic disorders is rapidly expanding, and so are insights into their varying phenotypes. Dosage compensation (lyonization) is an epigenetic mechanism that balances the expression of genes on heteromorphic sex chromosomes. Many studies in the literature have suggested a profound influence of this phenomenon on the manifestation of X-linked disorders in females. In this review, we summarize the clinical and genetic findings in female heterozygotic carriers of a pathogenic variant in one of ten selected X-linked genes whose defects result in metabolic disorders.  相似文献   
58.
In this research, we prepared foam scaffolds based on poly(l-lactide) (PLLA) and apatite whiskers (HAP) using thermally induced phase separation technique supported by the salt leaching process (TIPS-SL). Using sodium chloride having a size of (a) 150–315 μm, (b) 315–400 μm, and (c) 500–600 μm, three types of foams with different pore sizes have been obtained. Internal structure of the obtained materials has been investigated using SEM as well as μCT. The materials have been studied by means of porosity, density, and compression tests. As the most promising, the composite prepared with salt size of 500–600 μm was prepared also with the l-lysine modified apatite. The osteoblast hFOB 1.19 cell response for the scaffolds was also investigated by means of cell viability, proliferation, adhesion/penetration, and biomineralization. Direct contact cytotoxicity assay showed the cytocompatibility of the scaffolds. All types of foam scaffolds containing HAP whiskers, regardless the pore size or l-lysine modification induced significant stimulatory effect on the cal-cium deposits formation in osteoblasts. The PLLA/HAP scaffolds modified with l-lysine stimulated hFOB 1.19 osteoblasts proliferation. Compared to the scaffolds with smaller pores (150–315 µm and 315–400 µm), the PLLA/HAP foams with large pores (500–600 µm) promoted more effective ad-hesion of osteoblasts to the surface of the biomaterial.  相似文献   
59.
The present article presents first comparative study on three different dry solgel methods of producing new alumina‐based dark violet, light pink ceramic nanopigments as well as ruby‐red ceramic nanopigment — an alternative to the Purple of Cassius. Gold nanoparticles are built directly on a carrier of an aluminum oxide nanopowder, which finally yields Al2O3/Au nanopowders possessing colors ranging from light pink to light violet as well as ruby‐red.  相似文献   
60.
Maternal separation (MS) is a key contributor to neurodevelopmental disorders, including learning disabilities. To test the hypothesis that dopamine signaling is a major factor in this, an atypical new dopamine transporter (DAT) inhibitor, CE-123, was assessed for its potential to counteract the MS-induced spatial learning and memory deficit in male and female rats. Hence, neonatal rats (postnatal day (PND)1 to 21) were exposed to MS (180 min/day). Next, the acquisition of spatial learning and memory (Barnes maze task) and the expression of dopamine D1 receptor, dopamine transporter (DAT), and the neuronal GTPase, RIT2, which binds DAT in the vehicle-treated rats were evaluated in the prefrontal cortex and hippocampus in the adolescent animals. The results show that MS impairs the acquisition of spatial learning and memory in rats, with a more severe effect in females. Moreover, the MS induced upregulation of DAT and dopamine D1 receptors expression in the prefrontal cortex and hippocampus in adolescent rats. Regarding RIT2, the expression was decreased in the hippocampus for both the males and females, however, in the prefrontal cortex, reduction was found only in the females, suggesting that there are region-specific differences in DAT endocytic trafficking. CE-123 ameliorated the behavioral deficits associated with MS. Furthermore, it decreased the MS-induced upregulation of D1 receptor expression level in the hippocampus. These effects were more noted in females. Overall, CE-123, an atypical DAT inhibitor, is able to restore cognitive impairment and dopamine signaling in adolescent rats exposed to MS—with more evident effect in females than males.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号