首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   10篇
工业技术   127篇
  2023年   8篇
  2022年   25篇
  2021年   40篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   10篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   7篇
  2010年   6篇
  2009年   1篇
  2006年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
21.
Currently, the etiology of many neuromuscular disorders remains unknown. Many of them are characterized by aberrations in the maturation of the neuromuscular junction (NMJ) postsynaptic machinery. Unfortunately, the molecular factors involved in this process are still largely unknown, which poses a great challenge for identifying potential therapeutic targets. Here, we identified Tks5 as a novel interactor of αdystrobrevin-1, which is a crucial component of the NMJ postsynaptic machinery. Tks5 has been previously shown in cancer cells to be an important regulator of actin-rich structures known as invadosomes. However, a role of this scaffold protein at a synapse has never been studied. We show that Tks5 is crucial for remodeling of the NMJ postsynaptic machinery by regulating the organization of structures similar to the invadosomes, known as synaptic podosomes. Additionally, it is involved in the maintenance of the integrity of acetylcholine receptor (AChR) clusters and regulation of their turnover. Lastly, our data indicate that these Tks5 functions may be mediated by its involvement in recruitment of actin filaments to the postsynaptic machinery. Collectively, we show for the first time that the Tks5 protein is involved in regulation of the postsynaptic machinery.  相似文献   
22.
During biogas combustion, siloxanes form deposits of SiO2 on engine components, thus shortening the lifespan of the installation. Therefore, the development of new methods for the purification of biogas is receiving increasing attention. One of the most effective methods is physical absorption with the use of appropriate solvents. According to the principles of green engineering, solvents should be biodegradable, non-toxic, and have a high absorption capacity. Deep eutectic solvents (DES) possess such characteristics. In the literature, due to the very large number of DES combinations, conductor-like screening models for real solvents (COSMO-RS), based on the comparison of siloxane activity coefficient of 90 DESs of various types, were studied. DESs, which have the highest affinity to siloxanes, were synthesized. The most important physicochemical properties of DESs were carefully studied. In order to explain of the mechanism of DES formation, and the interaction between DES and siloxanes, the theoretical studies based on σ-profiles, and experimental studies including the 1H NMR, 13C NMR, and FT-IR spectra, were applied. The obtained results indicated that the new DESs, which were composed of carvone and carboxylic acids, were characterized by the highest affinity to siloxanes. It was shown that the hydrogen bonds between the active ketone group (=O) and the carboxyl group (-COOH) determined the formation of stable DESs with a melting point much lower than those of the individual components. On the other hand, non-bonded interactions mainly determined the effective capture of siloxanes with DES.  相似文献   
23.
Polyurethane (PU) recycling is a topic of growing interest due to the increasing amount of polyurethane waste. The main purpose of polyurethane chemical recycling is to recover the starting polyol. In this study, a method of polyurethane thermochemical recycling, glycerolysis by means of crude glycerin, is proposed. This work presents a comparative study of commercial catalysts used in order to accelerate the decomposition process, namely triethylamine (TEA), potassium acetate (KAc), 1,4‐diazabicyclo[2.2.2]octane (DABCO), sodium hydroxide (NaOH), dibutyltin dilaurate (DbDl), and stannous octoate (StOc).The effect of used catalyst on the chemical structure and rheological properties was studied. The type of catalyst does not have significant influence on the chemical structure, but causes different course of reaction: split‐ and single‐phase in applied conditions. Glycerolysates were measured by Brookfield Rheometer. It was found that repolyols can be described by the Herschel–Bulkely mathematical model in the best accuracy. The investigation showed that the rheological behavior of glycerolysates depended on the catalyst used in glycerolysis process. POLYM. ENG. SCI., 57:891–900, 2017. © 2016 Society of Plastics Engineers  相似文献   
24.
25.
Carbon monoxide (CO)—gaseous or released by CO-RMs—both possess antiplatelet properties; however, it remains uncertain whether the mechanisms involved are the same. Here, we characterise the involvement of soluble guanylate cyclase (sGC) in the effects of CO—delivered by gaseous CO–saturated buffer (COG) and generated by CORM-A1—on platelet aggregation and energy metabolism, as well as on vasodilatation in aorta, using light transmission aggregometry, Seahorse XFe technique, and wire myography, respectively. ODQ completely prevented the inhibitory effect of COG on platelet aggregation, but did not modify antiplatelet effect of CORM-A1. In turn, COG did not affect, whereas CORM-A1 substantially inhibited energy metabolism in platelets. Even though activation of sGC by BAY 41-2272 or BAY 58-2667 inhibited significantly platelet aggregation, their effects on energy metabolism in platelets were absent or weak and could not contribute to antiplatelet effects of sGC activation. In contrast, vasodilatation of murine aortic rings, induced either by COG or CORM-A1, was dependent on sGC. We conclude that the source (COG vs. CORM-A1) and kinetics (rapid vs. slow) of CO delivery represent key determinants of the mechanism of antiplatelet action of CO, involving either impairment of energy metabolism or activation of sGG.  相似文献   
26.
Antimicrobial resistance is a growing public health concern that requires urgent action. Biofilm-associated resistance to antimicrobials begins at the attachment phase and increases as the biofilms maturate. Hence, interrupting the initial binding process of bacteria to surfaces is essential to effectively prevent biofilm-associated problems. Herein, we have evaluated the antibacterial and anti-biofilm activities of three ruthenium complexes in different oxidation states with 2-pyridin-2-yl-1H-benzimidazole (L1 = 2,2′-PyBIm): [(η6-p-cymene)RuIIClL1]PF6 (Ru(II) complex), mer-[RuIIICl3(CH3CN)L1]·L1·3H2O (Ru(III) complex), (H2L1)2[RuIIICl4(CH3CN)2]2[RuIVCl4(CH3CN)2]·2Cl·6H2O (Ru(III/IV) complex). The biological activity of the compounds was screened against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa strains. The results indicated that the anti-biofilm activity of the Ru complexes at concentration of 1 mM was better than that of the ligand alone against the P. aeruginosa PAO1. It means that ligand, in combination with ruthenium ion, shows a synergistic effect. The effect of the Ru complexes on cell surface properties was determined by the contact angle and zeta potential values. The electric and physical properties of the microbial surface are useful tools for the examined aggregation phenomenon and disruption of the adhesion. Considering that intermolecular interactions are important and largely define the functions of compounds, we examined interactions in the crystals of the Ru complexes using the Hirshfeld surface analysis.  相似文献   
27.
In recent years, Facebook has become the most popular of social networking sites (SNSs). Due to its increasing popularity and rising number of its users, the phenomenon of Facebook has aroused academic interest as well. There has been a growing number of studies on this subject. The aim of this article is to present the main trends in Facebook research and to provide an overview of major empirical findings. Among the most intensively explored topics in Facebook research, studies that concentrate on personality and individual differences among users, the role of self-efficacy, and motivation for using that specific SNS were identified. There is also a growing trend in empirical studies that focuses on testing advanced theoretical models of Facebook usage determinants. Technology acceptance model, presented in this article, is one of the most often used among them. This kind of approach may serve as a suggestion for a methodological conceptualization in the future confirmatory research on Facebook.  相似文献   
28.
29.
The accumulation of specific metabolic intermediates is known to promote cancer progression. We analyzed the role of 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR), a nucleotide metabolite that accumulates in the blood of cancer patients, using the 4T1 murine in vivo breast cancer model, and cultured cancer (4T1) and endothelial cells (ECs) for in vitro studies. In vivo studies demonstrated that 4PYR facilitated lung metastasis without affecting primary tumor growth. In vitro studies demonstrated that 4PYR affected extracellular adenine nucleotide metabolism and the intracellular energy status in ECs, shifting catabolite patterns toward the accumulation of extracellular inosine, and leading to the increased permeability of lung ECs. These changes prevailed over the direct effect of 4PYR on 4T1 cells that reduced their invasive potential through 4PYR-induced modulation of the CD73-adenosine axis. We conclude that 4PYR is an oncometabolite that affects later stages of the metastatic cascade by acting specifically through the regulation of EC permeability and metabolic controls of inflammation.  相似文献   
30.
Mental health problems cover a wide spectrum of diseases, including mild to moderate anxiety, depression, alcohol/drug use disorders, as well as bipolar disorder and schizophrenia. Pharmacological treatment seems to be one of the most effective opportunities to recover function efficiently and satisfactorily. However, such disorders are complex as several target points are involved. This results in a necessity to combine different types of drugs to obtain the necessary therapeutic goals. There is a need to develop safer and more effective drugs. Considering that mental illnesses share multifactorial processes, the paradigm of one treatment with multiple modes of action rather than single-target strategies would be more effective for successful therapies. Therefore, hybrid molecules that combine two pharmacophores in one entity show promise, as they possess the desired therapeutic index with a small off-target risk. This review aims to provide information on chimeric structures designed for mental disorder therapy (i.e., schizophrenia and depression), and new types of drug candidates currently being tested. In addition, a discussion on some benefits and limitations of multifunctional, bivalent drug candidates is also given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号