首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   6篇
  国内免费   1篇
工业技术   136篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   10篇
  2019年   12篇
  2018年   8篇
  2017年   8篇
  2016年   9篇
  2015年   6篇
  2014年   11篇
  2013年   8篇
  2012年   12篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2000年   2篇
  1992年   1篇
  1991年   1篇
排序方式: 共有136条查询结果,搜索用时 0 毫秒
81.
This case study explores how educational training and clinical practice that uses personal computers (PCs) and Personal Digital Assistants (PDAs) to access Internet-based medical information, affects the engagement modes of students, flow experience components, and IT-competence. A questionnaire assessing these variables was administered before and after a training course. A follow-up interview investigated the contextual factors related to the use of PDAs. There were significant increases in IT-competence and in the positive and negative modes of engagement except for the Ambition/Curiosity mode. The overall flow experience did not change significantly over time. The PDA users showed an increase in negative modes across time larger than PC users due to technical, emotional, and motivational factors. This study concludes that a student's interaction with PCs and, in particular, PDAs produces positive and negative engagement modes and flow experiences that can be better understood by using the Engagement Modes model (EM-model).  相似文献   
82.
In this research a diamine monomer containing two phenoxy phenylene lateral groups, 2,2′-bis[(p-phenoxy phenyl)]-4,4′-diaminodiphenyl ether (PPAPE) was used to prepare novel wholly aromatic polyimides by thermal or chemical two-step polycondensation reactions. Comonomers including pyromellitic dianhydride (PMDA), 4,4′-oxydiphthalic anhydride (ODPA), and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) were used for the polyimidization reactions. A reference polyimide was also prepared by the reaction of 4,4′-diaminodiphenyl ether (DADPE) with pyromellitic dianhydride (PMDA). The limited viscosity numbers as well as [`(M)]n \overline{M}_n and [`(M)]w \overline{M}_w values of the resulting polymers were determined. All PPAPE-resulted polyimides had excellent organosolubility in common polar solvents. A low crystallinity extent was only observed using their wide-angle X-ray diffractograms (WAXD). The prepared hinged polyimides could also be cast into transparent and flexible films. The glass transition temperatures of the resulting polyimides were determined by differential scanning calorimetry (DSC) analyses. The thermograms obtained from thermogravimetric analyses (TGA) showed that the phenoxy phenylene lateral groups attached to the macromolecular backbones had no substantial diminishing effect on the thermal stability of these structurally-modified polyimides.  相似文献   
83.
Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile strength(ITS) and California bearing ratio(CBR) and as well as the evaluation of shear strength parameters obtained from the triaxial test would be very effective at geotechnical construction sites.This research was aimed at investigating the influence of natural fibers as sustainable ones including basalt(BS) and bagasse(BG) as well as synthetic polyester(PET) fibers on the strength behavior of clayey soil.To this end,the effects of various fiber contents(0.5%,1% and 2%) and lengths(2.5 mm,5 mm and 7.5 mm)were experimentally evaluated.By conducting ITS and CBR tests,it was found that increasing fiber content and length had a significant influence on CBR and ITS values.Moreover,2% of 7.5 mm-long fibers led to the largest values of CBR and ITS.The CBR values of soil reinforced with PET,BS,and BG fibers were determined as 19.17%,15.43% and 13.16%,respectively.The ITS values of specimens reinforced with PET,BS,and BG fibers were reported as 48.57 kPa,60.7 kPa and 47.48 kPa,respectively.The results of the triaxial compression test revealed that with the addition of BS fibers,the internal friction angle increased by about 100%,and with the addition of PET fibers,the cohesion increased by about 70%.Moreover,scanning electron microscope(SEM) analysis was employed to confirm the findings.The relationship between CBR and ITS values,obtained via statistical analysis and used for the optimum design of road pavement layers,demonstrated that these parameters had high correlation coefficients.The outcomes of multiple linear regression and sensitivity analysis also confirmed that the fiber content had a greater effect on CBR and ITS values than fiber length.  相似文献   
84.
Biofilms are complex structures formed by bacteria, fungi, or even viruses on biotic and abiotic surfaces, and they can be found in almost any part of the human body. The prevalence of biofilm-associated diseases has increased in recent years, mainly because of the frequent use of indwelling medical devices that create opportunities for clinically important bacteria and fungi to form biofilms either on the device or on the neighboring tissues. As a result of their resistance to antibiotics and host immunity factors, biofilms have been associated with the development or persistence of several clinically important diseases. The inability to completely eradicate biofilms drastically increases the burden of disease on both the patient and the healthcare system. Therefore, it is crucial to develop innovative ways to tackle the growth and development of biofilms. This review focuses on dental- and implant-associated biofilm infections, their prevalence in humans, and potential therapeutic intervention strategies, including the recent advances in pharmacology and biomedical engineering. It lists current strategies used to control the formation of clinically important biofilms, including novel antibiotics and their carriers, antiseptics and disinfectants, small molecule anti-biofilm agents, surface treatment strategies, and nanostructure functionalization, as well as multifunctional coatings particularly suitable for providing antibacterial effects to the surface of implants, to treat either dental- or implant-related bacterial infections.  相似文献   
85.
In this paper, a new approach is proposed to detect shifts of a multivariate quality control system. To do this, first, the decomposition method in multivariate normal distribution is introduced. Then, a control statistics is defined, and its properties are explained. In order to understand the proposed methodology and to evaluate its performance, a numerical example is provided by simulation. Moreover, the in- and out-of-control average run length of the proposed method are compared with the ones from the well-known multivariate cumulative sum and multivariate exponential weighted moving average in different scenarios of shifts. The results of the simulation study show that the proposed methodology performs better than the other methods in detecting the shifts of the standard deviation and correlation.  相似文献   
86.
A method is presented to fabricate metakaolin-based geopolymers that are structurally and mechanically stable up to 600°C. The chemical environment of the geopolymers is characterized using thermogravimetric analysis and Fourier-transform infrared spectroscopy. Residual free water turned into steam and caused damage to the geopolymer when exposed to elevated temperatures. The curing temperature was increased from 80 to 120°C to remove water during the curing process. A correlation was drawn between the amount of Si-O-Al linkage formed and the position of fingerprint peaks in infrared spectra, providing a tool to evaluate the level of geopolymerization. Flexural and tensile properties of geopolymers fabricated using the optimized method were measured for no heat treatment and for exposure to elevated temperatures of 200, 400, and 600°C. The flexural strength was measured to be 10.80 ± 2.99 MPa at room temperature, 10.36 ± 0.64 MPa at 400°C, and 8.04 ± 1.60 MPa at 600°C. The flexural modulus is reported to be 13.09 ± 3.40 GPa at room temperature and 11.03 ± 0.53 GPa at 600°C. The flexural toughness decreased with increasing temperature. The tensile properties of the geopolymer were measured with direct tensile tests paired with an extensometer. The tensile strength decreased from 4.16 ± 2.08 MPa at room temperature to 3.13 ± 0.97 MPa at 400°C, and 2.75 ± 0.86 MPa at 600°C. The Young's modulus decreased from 45.38 ± 30.30 GPa at room temperature to 26.88 ± 6.65 GPa at 600°C. Both flexural and tensile tests have shown that the metakaolin-based geopolymers cured at 120°C is mechanically stable at temperatures up to 600°C.  相似文献   
87.
Survival in harsh environments is critical to both the industrial performance of lactic acid bacteria (LAB) and their competitiveness in complex microbial ecologies. Among the LAB, members of the Lactobacillus casei group have industrial applications as acid-producing starter cultures for milk fermentations and as specialty cultures for the intensification and acceleration of flavor development in certain bacterial-ripened cheese varieties. They are amongst the most common organisms in the gastrointestinal (GI) tract of humans and other animals, and have the potential to function as probiotics. Whether used in industrial or probiotic applications, environmental stresses will affect the physiological status and properties of cells, including altering their functionality and biochemistry. Understanding the mechanisms of how LAB cope with different environments is of great biotechnological importance, from both a fundamental and applied perspective: hence, interaction between these strains and their environment has gained increased interest in recent years. This paper presents an overview of the important features of stress responses in Lb. casei, and related proteomic or gene expression patterns that may improve their use as starter cultures and probiotics.  相似文献   
88.
A series of different transition metals (V, Co, Cr, Mn, Fe, Ni, Cu and Zn) promoted H-ZSM-5 catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic activity of these catalysts was evaluated for the selective catalytic reduction (SCR) of NO with NH3 as reductant in the presence of oxygen. The results revealed that the catalytic activity of Cu-ZSM-5 nanocatalyst for NO conversion to N2 was 80% at 300 ℃, which was the best among various promoted metals. Design of experiments (DOEs) with Taguchi method was employed to optimize NH3-SCR process parameters such as NH3/NO ratio, O2 concentration, and gas hourly space velocity (GHSV) over Cu-ZSM-5 nanocatalyst at 250 and 300 ℃. Results showed that the most important parameter in NH3-SCR of NO is O2 concentration; followed by NH3/NO ratio and GHSV has little importance. The NO conversion to N2 of 63.1% and 94.86%was observed at 250 ℃ and 300 ℃, respectively under the obtained optimum conditions.  相似文献   
89.
This paper presents a computational framework for quasi‐static brittle fracture in three‐dimensional solids. The paper sets out the theoretical basis for determining the initiation and direction of propagating cracks based on the concept of configurational mechanics, consistent with Griffith's theory. Resolution of the propagating crack by the FEM is achieved by restricting cracks to element faces and adapting the mesh to align it with the predicted crack direction. A local mesh improvement procedure is developed to maximise mesh quality in order to improve both accuracy and solution robustness and to remove the influence of the initial mesh on the direction of propagating cracks. An arc‐length control technique is derived to enable the dissipative load path to be traced. A hierarchical hp‐refinement strategy is implemented in order to improve both the approximation of displacements and crack geometry. The performance of this modelling approach is demonstrated on two numerical examples that qualitatively illustrate its ability to predict complex crack paths. All problems are three‐dimensional, including a torsion problem that results in the accurate prediction of a doubly‐curved crack. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
90.
Nanocrystalline CeO2–MOx mixed oxides (M = Mn, Fe) with different M/(M + Ce) molar ratio are prepared by sol–gel combustion method. X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Temperature Programmed Reduction with H2 (H2-TPR) and N2-adsorption (BET) analyses are conducted to characterize the physical–chemical properties of the catalysts. The activity of catalysts for reduction of NOx with ammonia has been evaluated. The CeO2–MnOx catalysts showed better low temperature activity than CeO2–FeOx. The superior activity of CeO2–MnOx with Mn/(Mn + Ce) molar ratio of 0.25 respect to other catalysts (with 83% NO conversion and 68% N2 yield at 200 °C) is associated to nanocrystalline structure, reducibility at low temperature and synergistic effect between Ce and Mn that are observed by XRD, TEM and H2-TPR. The CeO2–FeOx catalysts were found to be active at high temperature, being Ce–Fe the best catalyst yielded 82% NO conversion at 300 °C. The effect of alkaline earth metals (Ca, Mg, Sr and Ba) loading on the structure and catalytic activity of cerium mixed oxides are also investigated. Loading of Ba enhanced the NO reduction activity of mixed oxides due to the increase of number of basic sites. Highest performance with 91% NO conversion and 80% N2 yield attained over CeO2–MnOx (0.25)-Ba (7%) catalyst at 200 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号