首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1087篇
  免费   114篇
  国内免费   1篇
工业技术   1202篇
  2024年   5篇
  2023年   21篇
  2022年   74篇
  2021年   183篇
  2020年   51篇
  2019年   36篇
  2018年   46篇
  2017年   50篇
  2016年   60篇
  2015年   48篇
  2014年   82篇
  2013年   62篇
  2012年   74篇
  2011年   74篇
  2010年   39篇
  2009年   43篇
  2008年   60篇
  2007年   39篇
  2006年   35篇
  2005年   31篇
  2004年   21篇
  2003年   13篇
  2002年   14篇
  2001年   7篇
  2000年   8篇
  1999年   1篇
  1998年   7篇
  1997年   9篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1964年   1篇
  1959年   1篇
排序方式: 共有1202条查询结果,搜索用时 125 毫秒
91.
For a successful implementation of newly proposed silicon-based latent heat thermal energy storage systems, proper ceramic materials that could withstand a contact heating with molten silicon at temperatures much higher than its melting point need to be developed. In this regard, a non-wetting behavior and low reactivity are the main criteria determining the applicability of ceramic as a potential crucible material for long-term ultrahigh temperature contact with molten silicon. In this work, the wetting of hexagonal boron nitride (h-BN) by molten silicon was examined for the first time at temperatures up to 1750 °C. For this purpose, the sessile drop technique combined with contact heating procedure under static argon was used. The reactivity in Si/h-BN system under proposed conditions was evaluated by SEM/EDS examinations of the solidified couple. It was demonstrated that increase in temperature improves wetting, and consequently, non-wetting-to-wetting transition takes place at around 1650 °C. The contact angle of 90° ± 5° is maintained at temperatures up to 1750 °C. The results of structural characterization supported by a thermodynamic modeling indicate that the wetting behavior of the Si/h-BN couple during heating to and cooling from ultrahigh temperature of 1750 °C is mainly controlled by the substrate dissolution/reprecipitation mechanism.  相似文献   
92.
Serine‐proteinase‐catalyzed peptide splicing was demonstrated in analogues of the trypsin inhibitor SFTI‐1: both single peptides and two‐peptide chains (C‐ and N‐terminal peptide chains linked by a disulfide bridge). In the second series, peptide splicing with catalytic amount of proteinase was observed only when formation of acyl–enzyme intermediate was preceded by hydrolysis of the substrate Lys–Ser peptide bond. Here we demonstrate that with an equimolar amount of the proteinase, splicing occurs in all the two‐peptide‐chain analogues. This conclusion was supported by high resolution crystal structures of selected analogues in complex with trypsin. We showed that the process followed a direct transpeptidation mechanism. Thus, the acyl–enzyme intermediate was formed and was immediately used for a new peptide bond formation; products associated with the hydrolysis of the acyl–enzyme were not observed. The peptide splicing was sequence‐ not structure‐specific.  相似文献   
93.
Active components comprised of fluorite-like Lnx(Ce0.5Zr0.5)1−xO2−y (Ln = La, Pr, Sm) and perovskite-like La0.8Pr0.2Mn0.2Cr0.8O3 mixed oxides and their composites with yttria-doped zirconia (YSZ) promoted by precious metals (Pt, Ru) and/or Ni were supported on several types of heat-conducting substrates (compressed Ni-Al foam, Fecralloy foil or gauze protected by corundum layer, Cr-Al-O microchannel cermets, titanium platelets protected by oxidic layer) as well as on honeycomb corundum monolithic substrate. These structured catalysts were tested in pilot-scale reactors in the reactions of steam reforming of methane, selective oxidation of decane and gasoline and steam/autothermal reforming of biofuels (ethanol, acetone, anisole, sunflower oil). Applied procedures of supporting nanocomposite active components on monolithic/structured substrates did not deteriorate their coking stability in real feeds with a small excess of oxidants, which was reflected in good middle-term (up to 200 h) performance stability promising for further up-scaling and long-term tests. Equilibrium yield of syngas at short contact times was achieved by partial oxidation of decane and gasoline without addition of steam usually required to prevent coking. For the first time possibility of successive transformation of biofuels (ethanol, acetone, anisole, sunflower oil) into syngas at short contact times on monolithic catalysts was demonstrated. This was provided by a proper combination of active component, thermal conducting monolithic substrates and unique evaporation/mixing unit used in this research.  相似文献   
94.
A technique of modeling of phase and chemical equilibria by equations of state for systems containing supercritical components and ionic species is considered. Attention is focused on the structure of equation of states with inclusion of non-electrolyte and electrostatic contributions. A hole quasichemical model was applied to illustrate the technique and to show how an EOS can be modified for systems with chemical reactions and electrostatic interactions in the liquid phase. The concentration dependency of the density and dielectric permittivity was taken into account in describing the electrostatic contribution that is required for thermodynamic consistency of the results of modeling. A method of assessing the appropriate relationships for mixtures containing supercritical components is suggested, alongside with the way to estimate the “true” composition of mixtures where ionic species are formed due to chemical reactions. The raised questions are discussed with respect to the following systems: solutions of acid gases in water-alkanolamine mixtures and water-ammonia-carbon dioxide system in a broad interval of temperatures and pressures.  相似文献   
95.
The design of nanostructured materials with specific physical properties is generally pursued by tuning nanoparticle size, concentration, or surface passivation. An important step forward is to realize “active” systems where nanoparticles are vehicles for controlling, in situ, some specific, tuneable features of a responsive functional material. In this perspective, this work focuses on the rational design of a nanostructured glass with electrically tuneable dielectric function obtained by injection and accumulation of charge on embedded conductive nanocrystals. This enables electrically controlled switching of semiconducting nanophases to charged polarisable states to be achieved, which could lead to smart, field‐enhancement applications in nanophotonics and plasmonics. Here, it is shown that such response switching can be obtained if a percolating charge‐transport mechanism is activated through a disordered tree‐like network, as is demonstrated to be possible in SiO2 films where suitable dispersions of SnO2 nanocrystals, with conductive interfaces, are obtained as a result of a new synthesis strategy.  相似文献   
96.
Undecylenic acid, glycerol, and CO2 were used as building blocks for obtaining a fully bio-based carbonated monomer, useful for polyurethanes. The functionality of the monomer was close to 3 cyclic carbonates/mol, located in terminal positions. In a first stage, a synthetic triglyceride was obtained with 99% selectivity by esterification of glycerol and undecylenic acid at 160°C. The triglyceride was then epoxidized using H2O2 and Amberlyst 15 or Amberlite IR-120 acidic exchange resins at 57°C. The selectivity to epoxide was kept constant at 98% using Amberlite IR-120. Terminal cyclic carbonates were then inserted through epoxide moieties under mild conditions by the chemical fixation of CO2 at 80°C and 6 MPa in 6 h. A complete conversion was obtained in 6 h reaction while the selectivity to carbonate groups was near to 99% during all the reaction time. An elastomeric polyhydroxyurethane was obtained by aminolysis of the carbonated monomer with ethylenediamine at 70°C, affording a Young's modulus of 22.6 MPa and Tg of −15.2°C. The material showed a good thermal stability below 240°C.  相似文献   
97.
Glucosinolates are amino acid derived allelochemicals present in all plants of the order Capparales. These compounds are degraded by myrosinase isoenzymes, releasing a series of biologically active products defined by the parent glucosinolate and the reaction conditions. Species within the Brassicaceae are found to differ in their glucosinolate profile and glucosinolate concentrations. Different tissues within a single plant also show such variations, which are further influenced by the growth stage and environmental conditions. In the experiments described in this paper, four Brassica species of the U‐triangle (B. carinata, B. nigra, B. juncea and B. rapa) were compared with respect to their glucosinolate profiles in roots, stems, leaves and reproductive organs at different developmental stages. The glucosinolate profile of corresponding ripe seeds was also determined. Prop‐2‐enylglucosinolate was identified as the major glucosinolate in the three mustards, where it represented over 90% of the total glucosinolate concentration of ripe seeds and over 50% of green tissues. The relative concentration of this glucosinolate increased in all tissues during plant growth. Brassica rapa showed a different glucosinolate profile than the three mustards, with higher concentrations of but‐3‐enylglucosinolate, 2‐hydroxybut‐3‐enylglucosinolate and 2‐hydroxypent‐4‐enylglucosinolate. The concentration of indol‐3‐ylmethylglucosinolates was also higher in B. rapa than in the mustard plants, with 4‐hydroxyglucobrassicin representing 30% of the total glucosinolate concentration in ripe seeds. The total glucosinolate concentration of the species studied varied with growth stage and the mustards achieved a maximum towards the end of the period monitored. Glucosinolate concentration decreased in roots and leaves but increased in reproductive tissues. The determined glucosinolate profiles are an initial step in assessing the biofumigation potential of these species of the Brassicaceae family. Copyright © 2007 Society of Chemical Industry  相似文献   
98.
Chicken meat presents serious problems of processing and storage. Edible coatings are used commercially to improve the shelf life of fresh foods. The aim of this study is to develop an effective antimicrobial edible coating to improve the shelf life and safety of fresh chicken meat. The effect of propionic acid and thyme essential oils as antimicrobial and antioxidant compounds incorporated into alginate‐based edible coating was evaluated. Physical, antimicrobial and sensorial analyses were performed in coated and uncoated samples. Sensorial analysis showed no significant differences between coated and uncoated samples, which do not influence the buying decisions of consumers. The pH of the meat surface, color and sensorial analysis changed during storage time, showing similar behavior between coatings, the principal parameters to determine the shelf life of this product were weight loss and microbiological deterioration, where coatings had different behaviors. The selected coating increased the shelf life by about 33% with the lowest dehydration.  相似文献   
99.
100.
In thermally sprayed coatings, nano-sized features of the microstructure may be either inherited from the nanostructured agglomerates of the feedstock powder or form as a result of rapid cooling of molten particles upon deposition. Applying a process of the computer-controlled detonation spraying (CCDS) to Ti3SiC2-Cu composite powders produced by high-energy mechanical milling, we show that both routes are possible depending on the spraying conditions. When the nanostructure of the Ti3SiC2-Cu coating is inherited from the feedstock powder—under very mild conditions of detonation spraying, which exclude melting, so is the phase composition of the coating. In higher-temperature conditions of spraying, a significant fraction of the copper matrix melts and the interaction between Ti3SiC2 and Cu occurs. The TiC x -Cu(Si) coatings that form show crystallites of both phases in the nano-range. In this case, rapid solidification of the molten fraction of the particles is responsible for the formation of the coatings with a nanostructured matrix. Due to the flexibility of the CCDS process, conditions of spraying were found such that a composite coating with very fine crystallites of the Cu(Si) matrix (30 nm) and a hardness of 273 HV could be obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号